

National Qualifications 2015

2015 Mathematics

New Higher Paper 1

Finalised Marking Instructions

© Scottish Qualifications Authority 2015

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Downloaded free from https://sqa.my/

General Comments

These marking instructions are for use with the 2015 Higher Mathematics Examination.

For each question the marking instructions are in two sections, namely Illustrative Scheme and Generic Scheme. The Illustrative Scheme covers methods which are commonly seen throughout the marking. The Generic Scheme indicates the rationale for which each mark is awarded. In general, markers should use the Illustrative Scheme and only use the Generic Scheme where a candidate has used a method not covered in the Illustrative Scheme.

All markers should apply the following general marking principles throughout their marking:

- 1 Marks must be assigned in accordance with these marking instructions. In principle, marks are awarded for what is correct, rather than deducted for what is wrong.
- 2 One mark is available for each •. There are **no** half marks.
- **3** Working subsequent to an error **must be followed through**, with possible full marks for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working for a follow through mark has been eased, the follow through mark cannot be awarded.
- 4 As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Throughout this paper, unless specifically mentioned in the marking instructions, a correct answer with no working receives no credit.
- 5 In general, as a consequence of an error perceived to be trivial, casual or insignificant, e.g. $6 \times 6 = 12$, candidates lose the opportunity of gaining a mark. But note the second example in comment 7.
- 6 Where a transcription error (paper to script or within script) occurs, the candidate should be penalised, eg

7 Vertical/horizontal marking

Where a question results in two pairs of solutions, this technique should be applied, but only if indicated in the detailed marking instructions for the question.

Markers should choose whichever method benefits the candidate, but **not** a combination of both.

8 In final answers, numerical values should be simplified as far as possible, unless specifically mentioned in the detailed marking instructions.

Examples: $\frac{15}{12}$ should be simplified to $\frac{5}{4}$ or $1\frac{1}{4}$ $\frac{43}{1}$ should be simplified to 43 $\frac{15}{0.3}$ should be simplified to 50 $\frac{\frac{4}{5}}{3}$ should be simplified to $\frac{4}{15}$ $\sqrt{64}$ must be simplified to 8 The square root of perfect squares up to and including 100 must be known.

- **9** Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
- 10 Unless specifically mentioned in the marking instructions, the following should not be penalised:
 Working subsequent to a correct answer;
 - Correct working in the wrong part of a question;
 - Legitimate variations in numerical answers, eg angles in degrees rounded to nearest degree;
 - Omission of units;
 - Bad form (bad form only becomes bad form if subsequent working is correct), e.g. $(x^3 + 2x^2 + 3x + 2)(2x + 1)$

written as

 $(x^3 + 2x^2 + 3x + 2) \times 2x + 1$

 $2x^4 + 4x^3 + 6x^2 + 4x + x^3 + 2x^2 + 3x + 2$

 $2x^4 + 5x^3 + 8x^2 + 7x + 2$ gains full credit;

- Repeated error within a question, but not between questions.
- 11 In any 'Show that . . .' question, where the candidate has to arrive at a required result, the last mark of that part is not available as a follow through from a previous error unless specifically stated otherwise in the detailed marking instructions.

- 12 All working should be carefully checked, even where a fundamental misunderstanding is apparent early in the candidate's response. Marks may still be available later in the question so reference must be made continually to the marking instructions. All working must be checked: the appearance of the correct answer does not necessarily indicate that the candidate has gained all the available marks.
- 13 If you are in serious doubt whether a mark should or should not be awarded, consult your Team Leader (TL).
- 14 Scored out working which has not been replaced should be marked where still legible. However, if the scored out working has been replaced, only the work which has not been scored out should be marked.
- 15 Where a candidate has made multiple attempts using the same strategy, mark all attempts and award the lowest mark. Where a candidate has tried different strategies, apply the above ruling to attempts within each strategy and then award the highest resultant mark. For example:

Strategy 1 attempt 1 is worth 3 marks	Strategy 2 attempt 1 is worth 1 mark
Strategy 1 attempt 2 is worth 4 marks	Strategy 2 attempt 2 is worth 5 marks
From the attempts using strategy 1, the	From the attempts using strategy 2, the
resultant mark would be 3.	resultant mark would be 1.

In this case, award 3 marks.

16 In cases of difficulty, covered neither in detail nor in principle in these instructions, markers should contact their TL in the first instance.

Detailed Marking Instructions for each question

Question	Generic Scheme	Illustrative Scheme	Max Mark
1.			
	• ¹ equate scalar product to zero	• 1 -24 + 2t + 6 = 0	2
	• ² state value of t	$\bullet^2 t = 9$	
Notes:			1
Commonly (Observed Responses:		
Candidate A	l l		
-24 + 2t + 6	$=-1$ $\bullet^1 \times$		
$t = \frac{17}{2}$ or $8\frac{1}{2}$	$\bullet^2 \checkmark 1$		
2.			
	 ¹ know to and differentiate 	$\bullet^1 6x^2$	4
	• ² evaluate $\frac{dy}{dx}$	• 2 24	
	 ³ evaluate y-coordinate 	• ³ -13	
	 ⁴ state equation of tangent 	• ⁴ $y = 24x + 35$	
Notes:			
 ●⁴ is only At mark ● equation 	available if an attempt has been r ⁴ accept $y+13 = 24(x+2)$, $y-24$	nade to find the gradient from different $x = 35$ or any other rearrangement of the formula of	tiation. he
Commonly Observed Responses:			

3. Mothod 1		
Mathed 1		
	4	
• ¹ know to use $x = -3$ • ¹ $(-3)^3 - 3(-3)^2 - 10(-3) + 24$		
• ² interpret result and state conclusion $e^2 = 0 \therefore (x+3)$ is a factor.		
Method 2		
•1		
$\begin{vmatrix} -3 & -3 & -10 & 24 \\ 2 & 2 & 2 \end{vmatrix}$		
$\left \frac{ -3 }{1} \right $		
-3 1 -3 -10 24		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
1 - 6 - 8 - 0		
remainder = $0 \therefore (x+3)$ is a factor.		
method 3		
$\bullet^1 x+3 \overline{)x^3-3x^2-10x+24}$		
$\frac{7}{x^3+3x^2}$		
$\mathbf{r}^2 = 0$: $(\mathbf{r} + 2)$ is a factor		
• = 0 $(x + 5)$ is a factor.		
• ³ state quadratic factor • ³ $x - 6x + 8$ stated or implied by • ⁴		
• $(x+3)(x-4)(x-2)$		
Notes:		
must arrive legitimately at 0 before \bullet^2 is awarded. 2. Accept any of the following for \bullet^2 : ' $f(-3) = 0$ so $(x+3)$ is a factor' 'since remainder is 0, it is a factor' the 0 from the table linked to the word 'factor' by eg 'so', 'hence', ' \therefore ', ' \rightarrow ', ' \Rightarrow ' 3. Do not accept any of the following for \bullet^2 : double underlining the zero or boxing the zero without comment ' $x = 3$ is a factor', ' $(x-3)$ is a factor', ' $x = -3$ is a root', ' $(x-3)$ is a root', " $(x+3)$ is a root" the word 'factor' only, with no link 4. At \bullet^4 the expression may be written in any order. 5. An incorrect quadratic correctly factorised may gain \bullet^4 6. Where the quadratic factor obtained is irreducible, candidates must clearly demonstrate		
that $b^2 - 4ac < 0$ to gain \bullet^4 7. = 0 must appear at \bullet^1 or \bullet^2 for \bullet^2 to be awarded. 8. For candidates who do not arrive at 0 at the \bullet^2 stage $\bullet^2 \bullet^3 \bullet^4$ not available.		
Do not penalise candidates who attempt to solve a cubic equation. However, with this working there may be evidence of the correct factorisation of the cubic.	nin	

Quest	ion	Generic Scheme	Illustrative Scheme	Max Mark
6.				
			1 1	3
		 ¹ use laws of logs 	• $\log_6 27^3$	
		 ² use laws of logs 	$\begin{pmatrix} 1 \end{pmatrix}$	
		3 ovaluato log	$\bullet^2 \log_6 \left(12 \times 27^3 \right)$	
			- ³ 2	
Notes	•		• 2	
	•			
Comm	nonly C	bserved Responses:		
Candi	date A		Candidate B	
$\log_6 1$	$2 + \log_{e}$	$5^9 \bullet^1 \times$	$1 \log (12 \times 27)$	
$\log_{\epsilon}(1$	2×9)	● ² √ 1	$\frac{-\log_6(12\times 27)}{3}$	
	<u></u>	● ³ ≥	1, 224	
$\log_6 1$	00		$-\log_6 324$	
			1	
			$\log_{6} 324^{\overline{3}}$	
			Award 1 out of 3 ^,^ 🔽	
7.				
		 ¹ write in differentiable form 	$-\frac{1}{2}$ $-\frac{3}{2}$ $-\frac{1}{2}$	4
			• $3x^2 - 2x$	
			Ω.	
		 ² differentiate first term 	$e^2 \frac{9}{2}x^{\frac{1}{2}} + \dots$	
			2	
		• ³ differentiate second term	• 3 + 2 x^{-2}	
		• ⁴ evaluate derivative at $x = 4$	• $4 9\frac{1}{8}$	
Notes	:		0	
1.	● ² mu	st involve a fractional index.		
2.	● ³ mu	st involve a negative index.		
3.	\bullet^4 is c	only available as a consequence of	substituting into a 'derivative' contain	ing a
	fracti	onal or negative index.	C C	Ū
4.	If no a	attempt has been made to expand	the bracket at \bullet^1 then $\bullet^2 \& \bullet^3$ are not as	vailable.
	\bullet^4 is s	till available as follow through.		
Comm	nonly C	bserved Responses:		
Candi	date A			
f(x)	$=3x^{\frac{1}{2}}-$	$2x^{-\frac{1}{4}}$		
	$3 \frac{1}{5} 1 \frac{5}{5}$			
f'(x)	$=\frac{1}{2}x^{2}$	$x^{2} + \frac{-x^{4}}{2}$ $e^{1} \times \frac{-x^{4}}{2}$		
	2			
	$=\frac{3}{2\sqrt{2}}$	$\frac{1}{x} + \frac{1}{2\sqrt[4]{x^5}} \qquad \bullet^3 \checkmark 1$		
f'(A)	3	1		
J (4)	$-\overline{2\sqrt{4}}$	$+\frac{1}{2\sqrt[4]{4^5}}$		
	_3	1		
	4	$8\sqrt{2}$		

Question	Generic Scheme	Illustrative Scheme	Max Mark
8.			
	 ¹ interpret information 	• $x(x-2) < 15$	4
	 ² express in standard quadratic form 	• $x^2 - 2x - 15 < 0$	
	• ³ factorise	• ³ $(x-5)(x+3) < 0$	
	 ⁴ state range 	• ⁴ 2 < <i>x</i> < 5	
Notes:			
Commonly	Observed Responses:		-
Candidate	$\mathbf{A} \mathbf{\bullet}^1 \times$	Candidate B - Mistaking perimeter	for area
x(x-2) = 1	² ∠ ²	4x - 4 < 15	
$x^2 - 2x - 13$	$5=0$ \bullet^3 \checkmark 1	$x < \frac{19}{4}$	
x = -3, 5	• ⁻ ^	4 Award 1/4	
Candidate	С	Candidate D	
$x^2 - 2x < 1$	5	$x^2 - 2x < 15$ Inequalities not	
x > 2		x > 2 linked by 'and'	
Award 1/4		r < 5	
		Award 2/4	
Candidate	E		
$x^2 - 2x < 1$	5		
x > 2	Inequalities linked by		
and	'and'		
x < 5 Award 4/4			

Question	Generic Scheme	Illustrative Scheme	Max Mark
9.			
	• ¹ find gradient of AB	1 /2	3
	- ma gradione of AB	• $m_{AB} = -\sqrt{3}$	•
	• ² calculate gradient of BC	2 11 1	
	calculate gradient of De	$m_{\rm BC} = -\frac{1}{\sqrt{3}}$	
	 ³ interpret results and state conclusion 	• $m_{AB} \neq m_{BC} \Rightarrow$ points are not collinear.	
		Method 2 • $m_{\rm AD} = -\sqrt{3}$	
		AB	
		• ² AB makes 120° with positive direction of the $x - axis$.	
		2	
		 ³ 120 ≠ 150 so points are not collinear. 	
Notos			
1 Tho st	atomont made at a ³ must be consid	stant with the gradients or angles foun	d for
		stent with the gradients of angles roun	
• and	•- <u>.</u>		
Commonly O	oserved Responses:		
10(a)			
10(a).			
	• ¹ state value of $\cos 2x$	• 1 $\frac{4}{5}$	1
Notes:		5	I
Commonly O	oserved Responses:		
Candidate A		Candidate B	
3	1	$\cos 2x = 4$	
$\cos 2x = \frac{c}{5}$	• ¹ ×		
3	● ² √ 1	$2\cos^2 x - 1 = 4$ $\bullet^2 \checkmark 1$	
$2\cos^2 x - 1 = .$	·· ● ³ ▼1	2 5	
2		$\cos^{-}x = -\frac{1}{2}$	
$\cos x = \frac{1}{\sqrt{5}}$			
ν5		$\cos x = \sqrt{\frac{5}{2}}$ $\bullet^3 \times$ invalid answ	ver
10(b).		, –	
			2
	 use double angle formula 	• $2\cos^2 x - 1 = \dots$	2
	3 augusts	³ <u>3</u>	
	• evaluate $\cos x$	$\sqrt{10}$	
Notes:			
	3		
1. Ignore	1. Ignore the inclusion of $-\frac{3}{\sqrt{10}}$.		
2. At \bullet^- the double angle formula must be equated to the candidates answer to part (a).			
Commonly Ol	oserved Responses:		

Question	۱	Generic Scheme	Illustrative Scheme	Max Mark
11(a).				
		 ¹ state coordinates of centre 	• ¹ (-8,-2)	4
		 ² find gradient of radius 	• $^{2} -\frac{1}{2}$	
		 ³ state perpendicular gradient 	• ³ 2	
		 ⁴ determine equation of tangent 	• $y = 2x - 1$	
Notes:				1
1. ● ⁴ is o	nly av	ailable as a consequence of trying	to find and use a perpendicular gradi	ient.
2. At ma	rk ● ⁴ a	accept $y + 5 = 2(x+2)$, $y - 2x = -1$, $y-2x+1=0$ or any other rearrange	ment of
the ec	quatio	n.		
Common	Commonly Observed Responses:			

Question	Generic Scheme	Illustrative Scheme	Max Mark
11(b).			
11(b).	 Method 1 ⁵ arrange equation of tangent in appropriate form and equate y_{tangent} to y_{parabola} ⁶ rearrange and equate to 0 ⁷ know to use discriminant and identify a, b, and c ⁸ simplify and equate to 0 ⁹ start to solve ¹⁰ state value of p 	Method 1 • ⁵ $2x-1 = -2x^2 + px + 1 - p$ • ⁶ $2x^2 + (2-p)x + p - 2 = 0$ • ⁷ $(2-p)^2 - 4 \times 2 \times (p-2)$ • ⁸ $p^2 - 12p + 20 = 0$ • ⁹ $(p-10)(p-2) = 0$ • ¹⁰ $p = 10$	6
Notes:	Method 2 • ⁵ arrange equation of tangent in appropriate form and equate $y_{tangent}$ to $y_{parabola}$ • ⁶ find $\frac{dy}{dx}$ for parabola • ⁷ equate to gradient of line and rearrange for p • ⁸ substitute and arrange in standard form • ⁹ factorise and solve for x • ¹⁰ state value of p	Method 2 Method 2 $5^{5} 2x - 1 = -2x^{2} + px + 1 - p$ $6^{6} \frac{dy}{dx} = -4x + p$ $7^{2} = -4x + p$ p = 2 + 4x $8^{8} 0 = 2x^{2} - 4x$ $9^{9} 0 = 2x(x - 2)$ x = 0, x = 4 $10^{10} p = 10$	
1. At • ⁶ accept $2x^2 + 2x - px + p - 2 = 0$. 2. At • ⁷ accept $a = 2, b = (2 - p)$, and $c = (p - 2)$. Commonly Observed Responses: Just using the parabola $a = -2$ $b = p$ $b^2 - 4ac = p^2 - 4 \times (-2)(1 - p)$ $p = 4 \pm \sqrt{8}$ $p = 4 \pm \sqrt{8}$ $p = 4 + \sqrt{8}$ as $p > 3$			

Question	Generic Scheme	Illustrative Scheme	Max Mark
12.			
	 ¹ interpret integral below 	• 1 -1 (accept area below $x - axis = 1$)	2
	x - axis	1	
		$2 - \frac{1}{2}$	
	evaluate	2	
Notes:	2		
1. For candio	dates who calculate the area as $\frac{3}{2}$	award 1 out of 2.	
Commonly C	Observed Responses:		
13(2)			T
15(0)	$\frac{1}{2}$ colouloto h	1 5	1
Notos	• calculate <i>b</i>	• 5	I
Notes.			
Commonly C	Observed Responses:		
13 (b)(i)			
	• ² reflecting in the line $y = x$	• ² y $f(x) = 2^{x} + 3$ $y = f^{-1}(x)$	x
Notes:			
1. If the	1. If the reflected graph cuts the $y - ax_{1s}$, • is not awarded.		
commonly C	buservea Responses:		

Quest	tion	Generic Scheme	Illustrative Scheme	Max Mark
13(b))(ii)			
		• ³ calculate y intercept	• ³ 4	3
		• ⁴ state coordinates of image of Q	• ⁴ (4, 0) see note 2	
		 ⁵ state coordinates of image of P 	• ⁵ (5, 1)	
Notes	:			
2.	● ⁴ can diagra	only be awarded if (4,0) is clearly m.	identified either by their labelling or	by their
3.	\bullet^3 is a	warded for the appearance of 4, or	(4,0) or (0,4).	
4.	● ⁵ is av	warded for the appearance of (5,1).	. Ignore any labelling attached to thi	s point.
Comn	nonly Ol	oserved Responses:		
Candi	date A		Candidate B	
y = f	(x) refle	ected in $x - axis$	y = f(x) reflected in y – axis	
4	• ³	✓	4 ● ³ ✓	
(0,-4)	• ⁴	✓ 2	(0,4) ● ⁴ ✓ 2	
(1,-5)	• ⁵	✓1	(-1,5) ● ⁵ ✓ 2	
13(c)				
		• ⁶ state x coordinate of R	$\bullet^6 x = 2$	2
		• ⁷ state y coordinate of R	• $^{7} y = -7$	
Notes	:			
•				
Comn	nonly Ob	oserved Responses:		
14				
		¹ identify length of radius	· · · · · · · · · · · · · · · · · · ·	2
		• identify length of radius e^2 determine value of h	y - axis tangent to circle through origin	2
			$\bullet^1 r = 6 \qquad \qquad r = \sqrt{61}$	
			• $^{2} k = 25$ $k = 0$	

Question	Generic Scheme	Illustrative Scheme	Max Mark
15.			
	 ¹ know to integrate 	• ¹ ∫	6
	• ² integrate a term	• $^{2} \frac{1}{50} t^{2} \dots$ or $\dots - kt$	
	• ³ complete integration	• ³ – kt or $\frac{1}{50}t^2$	
	 ⁴ find constant of integration 	• 4 c = 100	
	• ⁵ find value of k	• ⁵ $k = 2$	
	 ⁶ state expression for T 	⁶ $T = \frac{1}{50}t^2 - 2t + 100$	
Notes:	<u> </u>		
 Accept un 4⁴, ●⁵ and integratio 1^a may be 	 isimplified expressions at •² and •³ st •⁶ are not available for candidates on. implied by •². 	tage. who have not considered the constan	t of
Commonly C	Ubserved Responses:		

[END OF MARKING INSTRUCTIONS]

National Qualifications 2015

2015 Mathematics

New Higher Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2015

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

General Comments

These marking instructions are for use with the 2015 Higher Mathematics Examination.

For each question the marking instructions are in two sections, namely Illustrative Scheme and Generic Scheme. The Illustrative Scheme covers methods which are commonly seen throughout the marking. The Generic Scheme indicates the rationale for which each mark is awarded. In general, markers should use the Illustrative Scheme and only use the Generic Scheme where a candidate has used a method not covered in the Illustrative Scheme.

All markers should apply the following general marking principles throughout their marking:

- 1 Marks must be assigned in accordance with these marking instructions. In principle, marks are awarded for what is correct, rather than deducted for what is wrong.
- 2 One mark is available for each •. There are **no** half marks.
- **3** Working subsequent to an error **must be followed through**, with possible full marks for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working for a follow through mark has been eased, the follow through mark cannot be awarded.
- 4 As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Throughout this paper, unless specifically mentioned in the marking instructions, a correct answer with no working receives no credit.
- 5 In general, as a consequence of an error perceived to be trivial, casual or insignificant, e.g. $6 \times 6 = 12$, candidates lose the opportunity of gaining a mark. But note the second example in comment 7.
- 6 Where a transcription error (paper to script or within script) occurs, the candidate should be penalised, e.g.

7 Vertical/horizontal marking

Where a question results in two pairs of solutions, this technique should be applied, but only if indicated in the detailed marking instructions for the question.

Markers should choose whichever method benefits the candidate, but **not** a combination of both.

8 In final answers, numerical values should be simplified as far as possible, unless specifically mentioned in the detailed marking instructions.

Examples:
$$\frac{15}{12}$$
 should be simplified to $\frac{5}{4}$ or $1\frac{1}{4}$ $\frac{43}{1}$ should be simplified to 43
 $\frac{15}{0\cdot3}$ should be simplified to 50 $\frac{45}{3}$ should be simplified to $\frac{4}{15}$
 $\sqrt{64}$ must be simplified to 8 The square root of perfect squares up to and including 100 must be known.

- **9** Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
- 10 Unless specifically mentioned in the marking instructions, the following should not be penalised:
 Working subsequent to a correct answer;
 - Correct working in the wrong part of a question;
 - Legitimate variations in numerical answers, eg angles in degrees rounded to nearest degree;
 - Omission of units;
 - Bad form (bad form only becomes bad form if subsequent working is correct), e.g.

$$(x^{3}+2x^{2}+3x+2)(2x+1)$$

written as

 $(x^{3} + 2x^{2} + 3x + 2) \times 2x + 1$ 2x⁴ + 4x³ + 6x² + 4x + x³ + 2x² + 3x + 2 2x⁴ + 5x³ + 8x² + 7x + 2 gains full credit;

- Repeated error within a question, but not between questions.
- 11 In any 'Show that . . .' question, where the candidate has to arrive at a required result, the last mark of that part is not available as a follow through from a previous error unless specifically stated otherwise in the detailed marking instructions.

- 12 All working should be carefully checked, even where a fundamental misunderstanding is apparent early in the candidate's response. Marks may still be available later in the question so reference must be made continually to the marking instructions. All working must be checked: the appearance of the correct answer does not necessarily indicate that the candidate has gained all the available marks.
- 13 If you are in serious doubt whether a mark should or should not be awarded, consult your Team Leader (TL).
- 14 Scored out working which has not been replaced should be marked where still legible. However, if the scored out working has been replaced, only the work which has not been scored out should be marked.
- 15 Where a candidate has made multiple attempts using the same strategy, mark all attempts and award the lowest mark. Where a candidate has tried different strategies, apply the above ruling to attempts within each strategy and then award the highest resultant mark. For example:

Strategy 1 attempt 1 is worth 3 marks	Strategy 2 attempt 1 is worth 1 mark
Strategy 1 attempt 2 is worth 4 marks	Strategy 2 attempt 2 is worth 5 marks
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

16 In cases of difficulty, covered neither in detail nor in principle in these instructions, markers should contact their TL in the first instance.

Paper 2

Question	Generic Scheme	Illustrative Scheme	Max Mark	
1(a)				
 ¹ calculate gr 	adient of AB	• ¹ $m_{AB} = -3$		
• ² use property of perpendicular lines		• ² $m_{alt} = \frac{1}{3}$		
• ³ substitute into general equation of a line		• $y - 3 = \frac{1}{3}(x - 13)$		
• ⁴ demonstrate	e result	• $4 \dots \Rightarrow x - 3y = 4$	4	
Notes:				
 ⁴ is only available if there is/are appropriate intermediate lines of working between •³ and •⁴. The ONLY acceptable variations for the final equation for the line in •⁴ are 4 = x - 3y, -3y + x = 4, 4 = -3y + x. 				
Commonly Obs	served Responses:			
Candidate A		Candidate B		
$m_{AB} = \frac{-1 - (-5)}{-5 - 7} = \frac{4}{-12} = -\frac{1}{3}$ $m_{alt} = 3$ $y - 3 = 3(x - 13)$ $e^{4} \times$ For e^{4} $y - 3 = \frac{1}{3}x - \frac{13}{3}$ $y = \frac{1}{2}x - \frac{4}{2}$				
3y = r - 4 = not accentable				
• IS NOT AVAILABLE $3y - x - 4$ = not acceptable $3y - x - 4$				
		x - 3y = 4		

Question	Generic Scheme	Illustrative Scheme	Max Mark		
1(b)					
 ⁵ calculate r 	nidpoint of AC	• ⁵ $M_{AC} = (4,5)$			
 ⁶ calculate gradient of median 		• $m_{BM} = 2$			
 ⁷ determine 	equation of median	$\bullet^7 y = 2x - 3$	3		
Notes:	Notes:				
 4. •⁶ and •' a 5. •⁷ is only a 6. Candidate triangle ga 7. At •⁷ accep the equation 	 4. •⁶ and •⁷ are not available to candidates who do not use a midpoint. 5. •⁷ is only available as a consequence of using a non-perpendicular gradient and a midpoint. 6. Candidates who find either the median through A or the median through C or a side of the triangle gain 1 mark out of 3. 7. At •⁷ accept y - (-5) = 2(x - (-1)), y - 5 = 2(x - 4), y - 2x + 3 = 0 or any other rearrangement of 				
Commonly O	bserved Responses:				
Median throu	Jgh A	Median through C			
$\mathbf{M}_{BC} = (6, -1)$		$M_{AB} = (-3, 1)$			
$m_{AM} = \frac{-8}{11}$		$m_{CM} = \frac{1}{8}$			
$y+1 = \frac{-8}{11}(x-1)$	-6) or $y-7 = \frac{-8}{11}(x+5)$	$y-3 = \frac{1}{8}(x-13)$ or $y-1 = \frac{1}{8}(x+3)$			
Award 1/3		Award 1/3			
1(c)					
• ⁸ calculate	x or y coordinate	• ⁸ $x = 1$ or $y = -1$			
 ⁹ calculate of intersection 	remaining coordinate of the point stion	• 9 $y = -1$ or $x = 1$	2		
Notes:					
8. If the can both coord	didate's 'median' is either a vertica linates are correct, otherwise award	I or horizontal line then award 1 out d 0.	of 2 if		
Commonly O	bserved Responses:				
For candidat	es who find the altitude through	Candidate A			
B in part (b)		y-5=2(x-4) • ⁷ ✓			
$x = -\frac{1}{2}$		(D) $y = 2x - 13$ - error			
5	• ⁸ <u>₹1</u>				
$y = -\frac{7}{5}$	9 ✓1	x - 3y = 4 8			
5		$\int_{0}^{100} y = 2x - 13$			
		Leading to $x = 7$ and $y = 1$	J		

Question	Generic Scheme	Illustrative Sche	me Max Mark
2 (a)			
• ¹ interpret no	tation	• $f((1+x)(3-x)+2)$ star implied by • ²	ted or
• ² state a correct expression		• ² $10 + (1+x)(3-x) + 2$ simplied by • ³	stated or 2
Notes:			
1. \bullet^1 is not ava	illable for $g(f(x)) = g(10+x)$ but \bullet^2	may be awarded for $(1+2)$	(10+x)(3-(10+x))+2.
Commonly Ob	served Responses:		
Candidate A $f(q(x)) = 1$	a(f(x))	Candidate B	
(a) $\int (g(x)) = g(x)$	+10+x)(3-(10+x))+2 $+10+x)(3-(10+x))+2$	f(g(x)) = 10((1+x) - (3 - 1))	$(-x))+2 \stackrel{\bullet^1}{\bullet^2} \times$
(b) $= -75 - 75$	$-18x - x^2$ or $-x^2 - 18x - 75$ $3\sqrt{1}$		
$=-(x^{2})^{2}$	$+18x$ $\bullet^4 \checkmark 1$		
= -(x +	-9) ² • ⁵ √1	Candidate C	
=-(x+	$(-9)^2 + 6$		
	2)	f(g(x))	• ¹ ^
(c) $-(x+9)$	$(e^{6} \checkmark 1)^{2} + 6 = 0$	=10((1+x)(3-x))	$(z)+2) \bullet^2 \times$
x = -9	$+\sqrt{6}$ or $-9-\sqrt{6}$ $e^7 \checkmark 1$		
2 (b)			
• ³ write $f(g(x))$;)) in quadratic form	• 3 15+2x-x ² or -x ²	+2x+15
	Method 1	Method 1	
• ⁴ identify con	nmon factor	• 4 -1(x^{2} -2 x stated or implied by e^{5}	
		by ●	
 ⁵ complete th 	ne square	• ⁵ $-1(x-1)^2 + 16$	
	Method 2	Method 2	
• ⁴ expand com coefficients	pleted square form and equate	• ⁴ $px^2 + 2pqx + pq^2 + r$ a	nd $p = -1$,
 ⁵ process for form 	q and r and write in required	• ⁵ $q = -1$ and $r = 16$ Note if $p = 1$ • ⁵ is not a	available 3

Notes:				
2. Accept $16 - (x-1)^2$ or $-[$	$(x-1)^2 - 16$] at • ⁵			
Commonly Observed Response	es:			
Candidate A	Candidate B		Candidate C	
(2 2 15) 4	$15 + 2x - x^2$	• 3 ✓	2 · 0 · 15	
$-(x^2-2x-15)$ • \checkmark	$x^2 - 2x - 15$	\bullet^4 ×	$-x^{2} + 2x + 15$ \bullet^{3}	✓
$-(x^2-2x+1-1-15)$	$px^2 + 2pqx + pq^2$	$^{2} + r$ and $p = 1$	$-(x+1)^2$ • ⁴	×
$-(x-1)^2 - 16$ • ×	q = -1 $r = -16$	● ⁵ ✓ 2 eased	$-(x+1)^2+14$	×
Candidate D	Candidate E		Candidate F	
$15+2x-x^2$	$15 + 2x - x^2$	● ³ ✓	$-x^2 + 2x + 15$ 3	~
$x^2 - 2x - 15$ 4	$x^2 - 2x - 15$	•4 🗸	$-(x+1)^2$ • ⁴	×
$(x-1)^2 - 16$ • 5 2 eased	$(x-1)^2 - 16$		$-(x+1)^2+16$ • ⁵	√ 1
Eased, unitary coefficient of x^2 (lower level skill)	so $15 + 2x - x^2 =$	$= -(x-1)^2 + 16$		
2(c)				
• ⁶ identify critical condition		• $^{6} -1(x-1)^{2} +1$	6 = 0	
		or $f((g(x)) =$	= 0	
 ⁷ identify critical values 		• ⁷ 5 and -3		2
Notes:	<u> </u>			
3. Any communication indicat	ing that the den	ominator cannot	be zero gains • ⁶ .	
4. Accept $x = 5$ and $x = -3$ or	$x \neq 5$ and $x \neq -3$	at ● ⁷ .		
5. If $x = 5$ and $x = -3$ appear v	vithout working a	award 1/2.		
Commonly Observed Response	es:	Condidate D		
Candidate A		Candidate B		
1 6		1		
$\frac{-(x-1)^2+16}{7}$		$\overline{f(g(x))}$		
• <i>x</i> ≠ 5		f(g(x)) > 0	• ⁶ ×	
		x = -3, x = 5	•7 🗸	
		-3 < x x < 5		
3(a)				
• ¹ determine the value of the required term $122\frac{3}{4}$ or $\frac{91}{4}$ or 22.75				
Notes:				
1. Do not penalise the inclusion of incorrect units.				
2. Accept rounded and unsimplified answers following evidence of correct substitution.				
Commonly Observed Response	es:			

Question	Generic Scheme	Illustrative Scheme	Max Mark
3 (b)			
	Method 1 (Considering both limits)	Method 1	
• ² know how	to calculate limit	• ² $\frac{32}{1-\frac{1}{3}}$ or $L = \frac{1}{3}L + 32$	
• ³ know how	to calculate limit	• ${}^3 \frac{13}{1-\frac{3}{4}}$ or $L = \frac{3}{4}L + 13$	
• ⁴ calculate I	imit	• ⁴ 48	
 ⁵ calculate I 	imit	• ⁵ 52	
• ⁶ interpret li	mits and state conclusion	• 6 52 > 50 \therefore toad will escape	
(Frog f	Method 2 irst then numerical for toad)	Method 2	
• ² know how	to calculate limit	• ${}^2 \frac{32}{1-\frac{1}{2}}$ or $L = \frac{1}{3}L + 32$	
• ³ calculate I	imit	• ³ 48	
• ⁴ determine than 50	the value of the highest term less	• ⁴ 49·803	
 ⁵ determine greater that 	the value of the lowest term an 50	• $5 50 \cdot 352$	
• ⁶ interpret in	nformation and state conclusion	• $50 \cdot 352 > 50$: toad will escape	
(Nume	Method 3 erical method for toad only)	Method 3	
• ² continues r	numerical strategy	• ² numerical strategy	
 ³ exact value ⁴ determine 	e the value of the highest term less	• 30.0625 • ⁴ 49.803	
than 50 ● ⁵ determine	the value of the lowest term	• ⁵ 50·352	
greater that • 6 interpret in	an 50 nformation and state conclusion	• $50 \cdot 352 > 50$: toad will escape	
	Method 4	Method 4	
(L • ² & • ³ know	imit method for toad only) how to calculate limit	• ² & • ³ $\frac{13}{1-\frac{3}{4}}$ or $L = \frac{3}{4}L + 13$	
• 4 & • 5 calcula	ate limit	$\bullet^4 \& \bullet^5 52$	
• • ⁶ interpret li	mit and state conclusion	• 6 52 > 50 \therefore toad will escape	5

Notes:				
 ●⁶ is unavail 	able for candid	ates who do no	ot consider the toad in the	ir conclusion.
4. For candida	tes who only co	onsider the frog	g numerically award 1/5 fo	or the strategy.
Commonly Obse	erved Response	S: Mothod 3	Using Mothod 3	Using Mothod 2 Tood
limit - Frog Only	v Using	ad Only	Toad Only	Only
34 ₂	• ² ✓			• ²
$L_{\rm F} = \frac{1}{1}$	× • ³ ✓		• ² ✓	•3 •
$1-\frac{1}{3}$	\bullet^4 missi	ng ^	$\bullet^3 \checkmark$	\bullet^4 49.7 rounding
$L_{\rm F} = 51$ 5	$\checkmark 1$ • ⁵ 50·3.	52 🗸	• ⁴ missing ^	error ×
$51 > 50 \bullet^6$	✓1 ● ⁶ 50.3	52 > 50	• $50 \cdot 1$ rounding error ×	• ⁵ 50·1 1
∴ frog will escar	be. so the t	oad escapes. 🗸	• $50.1 > 50$	• $50.1 > 50$
			so the toad escapes.	so the toad escapes.
Toad Conclusion Limit = 52 This is greater th	ns han the height (of the well and	so the toad will escape -	award ● ⁶ .
However				
Limit =52 and sc	the toad escap	0es - ● ⁶ ^.		
Iterations				
$f_1 = 32$	$t_1 = 13$			
$f_2 = 42 \cdot 667$	$t_2 = 22 \cdot 75$			
$f_3 = 46 \cdot 222$	$t_3 = 30.0625$			
$f_4 = 47 \cdot 407$	$t_4 = 35 \cdot 547$			
$f_5 = 47 \cdot 802$	$t_5 = 39 \cdot 660$			
$f_6 = 47 \cdot 934$	$t_6 = 42 \cdot 745$			
$f_7 = 47 \cdot 978$	$t_7 = 45 \cdot 059$			
$f_8 = 47.993$	$t_8 = 46 \cdot 794$			
$f_9 = 47 \cdot 998$	$t_9 = 48 \cdot 096$			
	$t_{10} = 49 \cdot 072$			
	$t_{11} = 49 \cdot 804$			
	$t_{12} = 50 \cdot 353$			

Question	Generic Scheme	Illustrative Scheme	Max Mark	
4 (a)				
• ¹ know to equate $f(x)$ and $g(x)$				
	,	• ² $x = 2$	2	
Notes:				
 ●¹ and without 	1. \bullet^1 and \bullet^2 are not available to candidates who: (i) equate zeros, (ii) give answer or without working, (iii) arrive at $x = 2$ with erroneous working.			
Commonly O	bserved Responses:			
Candidate A		Candidate B		
$y = \frac{1}{4}x^2 - \frac{1}{2}x$	z+3	$\frac{1}{4}x^2 - \frac{1}{2}x = -3$		
$y = \frac{1}{4}x^2 - \frac{3}{2}x$	x+5	$\frac{1}{4}x^2 - \frac{3}{2}x = -5$ • ¹ ×		
subtract to ge	et			
0 = x - 2	2	$x = 2$ $\bullet^2 \times$		
<i>x</i> = 2	•2 🗸	In this case the candidate has equat	ed zeros	
Candidate C				
$f(x) = \frac{1}{4}x^2 - \frac{1}{2}$	$g(x) = \frac{1}{4}x^2 - \frac{3}{2}x + 5$			
$f'(x) = \frac{1}{2}x - \frac{1}{2}$	$g'(x) = \frac{1}{2}x - \frac{3}{2}$			
x = 1	$x = 3 \qquad \begin{array}{c} 1 \\ 2 \\ 2 \\ \end{array}$			
	$\therefore x = 2$			

Question	Generic Scheme	Illustrative Scheme	Max Mark	
4 (b)				
• ³ know to	integrate	• 3 ∫		
• ⁴ interpret limits		$\bullet^4 \int_{0}^{2}$		
• ⁵ use 'u	oper – lower'	• 5		
		$\int_{0}^{2} \left(\frac{1}{4}x^{2} - \frac{1}{2}x + 3\right) - \left(\frac{3}{8}x^{2} - \frac{9}{4}x + 3\right) dx$		
• 6 integra	ate	• $^{6} -\frac{1}{24}x^{3} + \frac{7}{8}x^{2}$ accept unsimplified integral		
• ⁷ substit	ute limits	$\bullet^7 \left(-\frac{1}{24} \times 2^3 + \frac{7}{8} \times 2^2 \right) - 0$		
• ⁸ evalua	te area between $f(x)$ and $h(x)$	9		
• ⁹ state t	otal area			
		• 17/3	7	
Notes:		and 4		
2. IT IIMI	is $x = 0$ and $x = 2$ appear ex ninito away		9 :+!!!	
4. II a ca	ble	and • are not available. However, •	• IS SUII	
5. Candic	lates who substitute at \bullet^7 , without atterver, \bullet^9 is still available.	empting to integrate at $ullet^6$, cannot ga	in ● ⁶ , ● ⁷ or	
6. Eviden	ce for \bullet^8 may be implied by \bullet^9 .			
7. ● ⁹ is a	strategy mark and should be awarded	for correctly multiplying their solution	on at ● ⁸ , or	
for any	other valid strategy applied to previo	bus working.		
0 10°	Source \bullet^5 is not awarded \bullet^6 may be	the constant term must be dealt with	i correctiy. of	
equiva	equivalent difficulty is a polynomial of at least degree two. • ⁶ is unavailable for the integration of a linear expression			
10. • ⁸ mus 1 or 0.	t be as a consequence of substituting i	nto a term where the power of x is	not equalto	

Commonly Observed Responses:	
Candidate A - Valid Strategy	Candidate B - Invalid Strategy
Candidates who use the strategy:	For example, candidates who integrate each of
Total Area = Area A + Area B	the four functions separately within an invalid
$\begin{array}{c c} y = f(x) & y = g(x) \\ \hline \mathbf{A} & \mathbf{D} \end{array}$	strategy
A B / Then mark as follows:	s ³
y = h(x) $y = k(x)$	$G_{ain} \bullet^4$ if limits correct on
mark Area B for • to • and	$\int f(x)$ and $\int h(x)$
award the higher of the two.	or
 Is available for correctly adding two equal areas 	
adding two equal aleas.	$\int g(x)$ and $\int k(x)$
	 ⁵ is unavailable
	Gain \bullet^6 for calculating either
	$\int f(x)$ or $\int g(x)$
	and
	$\int h(x)$ or $\int k(x)$
	Gain • ⁷ for correctly substituting at least twice Gain • ⁸ for evaluating at least two integrals correctly • ⁹ is unavailable
Candidate C	Candidate D
$\int_{0}^{2} \left(\frac{1}{4}x^{2} - \frac{1}{2}x + 3 - \frac{3}{8}x^{2} - \frac{9}{4}x + 3\right) dx$	$\int_{0}^{2} \left(\frac{1}{4}x^{2} - \frac{1}{2}x + 3 - \frac{3}{8}x^{2} - \frac{9}{4}x + 3\right) dx$
$\int_{0}^{2} \left(-\frac{1}{8} x^{2} - \frac{11}{4} x \right) dx \qquad \bullet^{5} \checkmark$	$\int_{0}^{2} \left(-\frac{1}{8}x^{2} - \frac{11}{4}x + 6 \right) dx \bullet^{5} \times$
$\frac{-1}{24}x^3 - \frac{11}{8}x^2 \qquad \bullet^6 \times$	$-\frac{1}{24}x^3 - \frac{11}{8}x^2 + 6x \qquad \bullet^6 \checkmark 1$
Candidate E	Candidate F
$\int \dots = -\frac{1}{3}$ cannot be negative so $=\frac{1}{3} \bullet^8 \times$	$\int_{0}^{2} \left(\frac{1}{4}x^{2} - \frac{1}{2}x + 3 - \frac{3}{8}x^{2} - \frac{9}{4}x + 3\right) dx$
however, $= -\frac{1}{3}$ so Area $= \frac{1}{3}$ $\bullet^8 \checkmark$	$\int_{0}^{\infty} \left(-\frac{1}{8} x^{2} + \frac{7}{4} x \right) dx \qquad \bullet^{5} \checkmark$
	$-\frac{1}{24}x^3 + \frac{7}{8}x^2$ • ⁶ ✓

Question	Generic Scheme	Illustrative Scheme	Max Mark
5(a)			
• ¹ state cent	re of C ₁	• ¹ (-3,-5)	
• ² state radiu	is of C ₁	• ² 5	
• ³ calculate distance between centres of C_1 and C_2		• ³ 20	
- 2		• ⁴ 15	
 ⁴ calculate radius of C₂ 			4
Notes:			
1. For \bullet^4 to be awarded radius of C ₀ must be greater than the radius of C ₁			

For ●⁴ to be awarded radius of C₂ must be greater than the radius of C₁.
 Beware of candidates who arrive at the correct solution by finding the point of contact by an

invalid strategy.

3. •⁴ is for $Distance_{c1c2} - r_{c1}$ but only if the answer obtained is greater than r_{c1} . Commonly Observed Responses:

Question	Generic Scheme	Illustrative Scheme	Max Mark
5 (b)			
 ⁵ find rati joining control 	o in which centre of C_3 divides line entres of C_1 and C_2	• ⁵ 3:1	
• ⁶ determine centre of C_3		• ⁶ (6,7)	
• ⁷ calculate	radius of C ₃	• $r = 20$ (answer must be consistent with distance	
• ⁸ state equ	lation of C_3	• ⁸ $(x-6)^2 + (y-7)^2 = 400$	4
Notes:			
4. For \bullet^5 ac	cept ratios $\pm 3:\pm 1,\pm 1:\pm 3,\mp 3:\pm 1,\mp 1:$	± 3 (or the appearance of $\frac{3}{4}$).	
 5. •⁷ is for r_{c2}+r_{c1}. 6. Where candidates arrive at an incorrect centre or radius from working then •⁸ is available. However •⁸ is not available if either centre or radius appear ex nihilo (see note 5). 7. Do not accept 20² for •⁸. 8. For candidates finding the centre by 'stepping out' the following is the minimum evidence for •⁵ and •⁶. (9,11). 			
Correct 'f	● ⁵ ✓ ● ⁶ × follow through'	Correct answer using the ratio 3:1 \longrightarrow (6,7) 16 $\overset{5}{\checkmark}$ 16 $\overset{6}{\checkmark}$ 12	16
using the	ratio 1:3 \longrightarrow (0,-1) (-3,-5) $\frac{4}{3}$	(-3,-5) 9	
Commonly	Observed Responses:	12	
Candidate /	1	Candidate B	
using the m	id-point of centres: 5	$C_1 = (-3, -5)$ $\sim C_2(9, 11)$	r = 20
centre $C_3 =$		1:3	
radius of C ₃ $(x-3)^2 + (y)^2$	(x = 20) $(x - 3)^2 = 400$ $(x - 3)^2 = 400$	$C_3 = \frac{1}{4} \begin{pmatrix} 0 \\ -4 \end{pmatrix} \qquad \qquad \bullet^5 \checkmark \mathbf{n}$	ote 4 2
		$C_{3} = (0, -1) \qquad \bullet^{7} \checkmark \\ \mathbf{x}^{2} + (y+1)^{2} = 400 \qquad \bullet^{8} \checkmark$	
Candidate (C - touches C_1 internally only	Candidate D - touches C_2 intern	nally only
• ⁵ ×		• ⁵ ×	
\bullet^6 centre	$C_3 = (3,3) \times$	• ⁶ centre $C_3 = (3,3) \times$	
• ⁷ radius • $(x-3)^2$	of $C_3 = \text{radius of } C_2 = 15 \checkmark 1$ + $(y-3)^2 = 225 \checkmark 1$	• ⁷ radius of C ₃ = radius of C ₁ = 5 • $(x-3)^2 + (y-3)^2 = 25$ 1	√ 1
Candidate I • ⁵ × • ⁶ e.g. centre • ⁷ radius of	E - centre C_3 collinear with C_1, C_2 e $C_3 = (21,27) \times C_3 = 45$ (touch C_1 internally only)		
$e^{8(x-21)^2}$ +	$(y-27)^2 = 2025$ V 1		

Question	Generic Scheme	Illustrative Scheme	Max Mark
6 (a)		· ·	
• ¹ Expands		• ¹ $\mathbf{p.q} + \mathbf{p.r}$	
• ² Evaluate	p.q	- ² 1	
		• $4{2}$	
• ³ Complete	es evaluation	3 4 1	
		• $+0=4{2}$	3
Notes:			
1. For p .(q ·	$(+r) = pq + pr$ with no other working \bullet	is not available.	
Commonly	Observed Responses:		
6 (b)			
• ⁴ correct e	expression	• ⁴ - q + p + r or equivalent	1
6 (c)			
• ⁵ correct s	ubstitution	• ⁵ - q.q + q.p + q.r	
• ⁶ start eva	luation	• ⁶ -9++3 r cos 30° = 9 $\sqrt{3}$ - $\frac{9}{2}$	
7 c ha d			
• Tind expr	ession for $ \mathbf{r} $	$ \bullet' \mathbf{r} = \frac{5.55}{\cos 30}$	3
Notes:			
2. Award • ⁵	for $-\mathbf{q}^2 + \mathbf{q} \cdot \mathbf{p} + \mathbf{q} \cdot \mathbf{r}$		
Commonly	Observed Responses:		
Candidate A	A	Candidate B	
-a.a + a.p +	$a = 9\sqrt{3} - \frac{9}{2}$ 5	0	
4.4 , 4. 5 ,		$-q.q+q.p+q.r=9\sqrt{3}-\frac{9}{2}$	✓
$-9 + \frac{9}{2} + 3 \mathbf{r} \cos 150^\circ = 9\sqrt{3} - \frac{9}{2}$			√
		$-9 + \frac{9}{2} + 3 \mathbf{r} \cos 30^\circ = 9\sqrt{3} - \frac{9}{2}$	✓
 r _	3√3		
* -	cos150	$ \mathbf{r} = \mathbf{o}$	

Question	Generic Scheme	Illustrative Scheme	Max Mark	
7 (a)				
 ¹ integrate a term ² complete integration with constant 		• $\frac{3}{2}\sin 2x$ OR x • $x+c$ $\frac{3}{2}\sin 2x+c$	2	
Notes:				
Commonly O	bserved Responses:			
7 (b)				
(d) (
 ³ substitute ⁴ substitute 	for cos 2 <i>x</i> for 1 and complete	• $3(\cos^2 x - \sin^2 x)$ or $(\sin^2 x + \cos^2 x)$ • $(\sin^2 x + \cos^2 x) = 4\cos^2 x - 2\sin^2 x$	2	
Notes:			Z	
 Any valid substitution for cos 2x is acceptable for •³. Candidates who show that 4 cos² x - 2 sin² x = 3 cos 2x + 1 may gain both marks. Candidates who quote the formula for cos 2x in terms of A but do not use in the context of the question cannot gain •³. Commonly Observed Responses: 				
Candidate A	2	•3 🗸		
$3\cos 2x + 1 =$	$(2\cos^2 x - 1) + (2\cos^2 x - 1) + (1 - 2\sin^2 x)$	$(x^2 x) + 1 \qquad \bullet^4 \checkmark$		
	$=4\cos^2 x - 2\sin^2 x$			
Candidate B $4\cos^2 x - 2\sin^2 x = 2(\cos 2x + 1) - (1 - \cos 2x)$ $\bullet^3 \checkmark$ $= 3\cos 2x + 1$ $\bullet^4 \checkmark$				
7 (c)				
● ⁵ interpret I	ink	• ⁵ $-\frac{1}{2}\int dt dt$		
• ⁶ state resul	t	• ⁶ $-\frac{3}{4}\sin 2x - \frac{1}{2}x + c$	2	
Notes:				
Commonly O	bserved Responses:			
$\int \sin^2 x - 2co$	$s^2 x dx$			
$\int \sin^2 x = \int (3\cos 2x + 1)^2 dx$	$-1) dx \bullet^5 \times$			
$\frac{3}{2}\sin 2x + x +$	$c \bullet^6 \times$			

Question	Generic Scheme	Illustrative Scheme	Max Mark		
8 (a) (i)	3 (a) (i)				
• ¹ calculate T when $x = 20$		• ¹ 10·4 or 104	1		
8 (a) (ii)					
• ² calculate T when $x = 0$		• ² 11 or 110	1		
Notes:					
 Accept correct answers with no units. Accept 5√436 or 10√109 or equivalent for T(20). For correct substitution alone, with no calculation •¹ and •² are not available. For candidates who calculate T when x = 0 at •¹ then •² is available as follow through for calculating T when x = 20 in part(ii). 					
Commonly Observed Responses:					
a) (i) (ii) b) lead 9.8s	$10 \cdot 4 \bullet^{1} \checkmark \text{ See note 1}$ $110 \bullet^{2} \checkmark$ ng to econds $\bullet^{10} \times \text{ See note 7}$				

Question	Generic Scheme	Illustrative Scheme	Max Mark		
8 (b)					
	• ³ write function in differential form	$\Phi^{3} 5(36 + x^{2})^{\frac{1}{2}} + \dots$			
	 ⁴ start differentiation of first term 	• $^{4} 5 \times \frac{1}{2} ()^{-\frac{1}{2}} \dots$			
	 ⁵ complete differentiation of first term 	• ⁵ ×2 <i>x</i>			
	• ⁶ complete differentiation and set candidate's derivative = 0	• $65x(36 + x^2)^{\overline{2}} - 4 = 0$ $5x = 4(36 + x^2)^{\frac{1}{2}}$			
	• ⁷ start to solve	•7 or •7 $\frac{5x}{(36 + x^2)^{\frac{1}{2}}} = 4$			
	 ⁸ know to square both sides 	$25x^{2} = 16(36 + x^{2})$ ⁸ or $\frac{25x^{2}}{(36 + x^{2})} = 16$			
	• ⁹ find value of x	• ⁹ $x = 8$			
	 ¹⁰ calculate minimum time 	• 10 T = 9.8 or 98 no units required	8		
Notes:	l	<u> </u>			
5. Incor	rect expansion of $()^{\frac{1}{2}}$ at stage • ³ onl	ly \bullet^6 and \bullet^{10} are available as follow	v through.		
 6. Incorrect expansion of ()^{-1/2} at stage •⁷ only •¹⁰ is available as follow through. 7. Where candidates have omitted units, then •¹⁰ is only available if the implied units are 					
8. • ¹⁰ is	 consistent throughout their solution. •¹⁰ is only available as a follow through for a value which is less than the values obtained for the two extremes. 				
Commonly C	Observed Responses:				

Question		Generic Scheme	Illustrative Scheme		ne	Max Mark	
9.							
• ¹ • ²	 ¹ use compound angle formula ² compare coefficients 		• $k \sin 1.5t \cos a - k \cos 1.5t \sin a$ • $k \cos a = 36, k \sin a = 15$ stated explicitly				
• ³ • ⁴	b^{3} process for k b^{4} process for a		• ³ $k = 39$ • ⁴ $a = 0.39479rad or 22.6^{\circ}$				
• ⁵	equates exp	pression for <i>h</i> to 100	• ⁵				
•6	write in standard format and attempt to solve		$39\sin(1.5t - 0.39479) + 65 = 100$ • $\sin(1.5t - 0.39479) = \frac{35}{39}$				
•7	solve equat	ation for $1 \cdot 5t$		$\Rightarrow 1 \cdot 5t - 0 \cdot 39479 \dots = \sin^{-1}\left(\frac{35}{2}\right)$			
• ⁸	process solu	itions for t	(39)				
			•7	$\frac{\bullet'}{1\cdot 5t = 1\cdot 508}$	and	• ⁸ 2·422	
			•8	t = 1.006	and	1.615	8
No	otes:						

1. Treat $k \sin 1.5t \cos a - \cos 1.5t \sin a$ as bad form only if the equations at the \bullet^2 stage both contain *k*.

- 2. $39\sin 1.5t\cos a 39\cos 1.5t\sin a$ or $39(\sin 1.5t\cos a \cos 1.5t\sin a)$ is acceptable for \bullet^1 and \bullet^3 .
- 3. Accept $k\cos a = 36$ and $-k\sin a = -15$ for \bullet^2 .
- 4. •² is not available for $k \cos 1.5t = 36$ and $k \sin 1.5t = 15$, however, •⁴ is still available.
- 5. •³ is only available for a single value of k, k > 0.
- 6. •⁴ is only available for a single value of a.
- 7. The angle at \bullet^4 must be consistent with the equations at \bullet^2 even when this leads to an angle outwith the required range.
- 8. Candidates who identify and use any form of the wave equation may gain \bullet^1 , \bullet^2 and \bullet^3 , however, \bullet^4 is only available if the value of a is interpreted for the form $k \sin(1 \cdot 5t a)$.
- 9. Candidates who work consistently in degrees cannot gain •⁸.
- 10. Do not penalise additional solutions at \bullet^8 .
- 11. On this occasion accept any answers which round to 1.0 and 1.6 (2 significant figures required).

[END OF MARKING INSTRUCTIONS]