

Qualifications

2018 Mathematics

Higher - Paper 1

Finalised Marking Instructions

© Scottish Qualifications Authority 2018

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, written permission must be obtained from permissions@sga.org.uk.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments. This publication must not be reproduced for commercial or trade purposes.

General marking principles for Higher Mathematics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

For each question, the marking instructions are generally in two sections:

- generic scheme this indicates why each mark is awarded
- illustrative scheme this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.

- (a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
- (b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
- (c) One mark is available for each •. There are no half marks.
- (d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
- (e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
- (f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
- (g) If an error is trivial, casual or insignificant, for example $6 \times 6 = 12$, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.
- (h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above

(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

Horizontal: ${}^{5}x = 2$ and x = -4 ${}^{6}y = 5$ y = -7Horizontal: ${}^{5}x = 2$ and x = -4 ${}^{6}y = 5$ and y = -7Vertical: ${}^{5}x = 2$ and y = 5 ${}^{6}x = -4$ and y = -7

You must choose whichever method benefits the candidate, **not** a combination of both.

(j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example

$\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1\frac{1}{4}$	$\frac{43}{1}$ must be simplified to 43
$\frac{15}{0\cdot 3}$ must be simplified to 50	$\frac{\frac{4}{5}}{3}$ must be simplified to $\frac{4}{15}$
$\sqrt{64}$ must be simplified to 8*	

*The square root of perfect squares up to and including 100 must be known.

- (k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
- (I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:
 - working subsequent to a correct answer
 - correct working in the wrong part of a question
 - legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
 - omission of units
 - bad form (bad form only becomes bad form if subsequent working is correct), for example

 $(x^{3}+2x^{2}+3x+2)(2x+1)$ written as $(x^{3}+2x^{2}+3x+2) \times 2x+1$ $= 2x^{4}+5x^{3}+8x^{2}+7x+2$ gains full credit

- repeated error within a question, but not between questions or papers
- (m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.
- (n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.

- (o) You should mark legible scored-out working that has not been replaced. However, if the scored-out working has been replaced, you must only mark the replacement working.
- (p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Detailed marking instructions for each question

Question	Generic scheme	Illus	trative scheme	Max mark
1.	• ¹ find mid-point of PQ	•1 (1,2)		3
	• ² find gradient of median	•2 2		
	• ³ determine equation of median	• ³ $y = 2x$		
Notes:		-		
 •² is only av •³ is only av which lies o 	ailable to candidates who use a mid ailable as a consequence of using t n the median, eg $(2,4)$.	dpoint to find a gr he mid-point and t	adient. he point R, or any other	point
3. At • ³ accept	any arrangement of a candidate's	equation where co	onstant terms have been	
4. \bullet^3 is not ava	ilable as a consequence of using a	perpendicular grad	lient.	
Commonly Obse	erved Responses:			
Candidate A - P	erpendicular Bisector of PQ	Candidate B - Alt	itude through R	
$M_{PQ}(1,2)$	•1 🗸	$m_{\rm PQ} = -\frac{2}{3}$	●1 ▲	
$m_{PQ} = -\frac{2}{3} \Rightarrow m_{\perp}$	$=\frac{3}{2}$ $\bullet^2 \mathbf{x}$	$m_{\perp} = \frac{3}{2}$	• ² x	
2y = 3x + 1	• ³ <u>✓</u> 2	2y = 3x + 3	• ³ ✓ 2	
For other perpe	ndicular bisectors award 0/3			
Candidate C - M	edian through P	Candidate D - Me	dian through Q	
$M_{QR}(3.5,3)$	• ¹ x	$M_{PR}(0.5,5)$	• ¹ ¥	
$m_{\rm PM} = -\frac{2}{11}$	• ² <u>1</u>	$m_{\rm QM} = -\frac{10}{7}$	• ² <u>1</u>	
11y + 2x = 40	• ³ ✓ 2	7y + 10x = 40	• ³ ✓ 2	

Question	Generic scheme	Illustrative scheme	Max mark
2.	Method 1 •1 equate composite function to 9	$f = \frac{\text{Method 1}}{g(g^{-1}(x)) = x}$	3
	• ² write $g(g^{-1}(x))$ in terms of $g^{-1}(x)$	• ² $\frac{1}{5}g^{-1}(x) - 4 = x$	
	• ³ state inverse function	• ³ $g^{-1}(x) = 5(x+4)$	
	Method 2	Method 2	
	• ¹ write as $y = \frac{1}{5}x - 4$ and start to	$\bullet^1 y + 4 = \frac{1}{5}x$	
	rearrange	(
	• ² express x in terms of y	• ² eg $x = 5(y+4)$ or $x = \frac{(y+4)}{\frac{1}{5}}$	
	• ³ state inverse function	• ³ $g^{-1}(x) = 5(x+4)$	
	Method 3	Method 3	
	• ¹ interchange variables	$\bullet^1 x = \frac{1}{5}y - 4$	
	• ² express y in terms of x	• ² eg $y = 5(x+4)$ or $y = \frac{(x+4)}{\frac{1}{5}}$	
	• ³ state inverse function	• ³ $g^{-1}(x) = 5(x+4)$	
Notes:			
1. y = 5(x+4)	does not gain \bullet^3 .		
2. At • ³ stage, 3. $g^{-1}(x) = 5($	accept g^{-1} written in terms of any $x+4$) with no working gains 3/3.	dummy variable eg $g^{-1}(y) = 5(y+4)$.	
Commonly Obse	erved Responses:		
Candidate A			
$x \to \frac{1}{5}x \to \frac{1}{5}x -$	$4 = g\left(x\right)$		
$\div 5 \rightarrow -4$			
$\therefore +4 \rightarrow \times 5$	 ●¹ ✓ awarded for know 	wing to perform	
inverse operations in $5(x+4)$ $\bullet^2 \checkmark$		is in reverse order	
$g^{-1}(x) = 5(x+4)$	•) • ³ ✓		
Candidate B - B	EWARE	Candidate C	
$g'(x) = \dots$	• ³ x	$g^{-1}(x) = 5x + 4$ with no world	king
		Award 0/3	

Question	Gener	ic scheme	Illu	strative scheme	Max mark
3.	• ¹ start to differ	entiate	• ¹ $-3\sin 2x$	\ldots stated or implied by \bullet^2	3
	• ² complete diff	erentiation	• ² ×2		
	• ³ evaluate deri	vative	\bullet^3 $-3\sqrt{3}$		
Notes:					
1. Ignore the a	ppearance of $+c$	at any stage.			
2. • ³ is availab	le for evaluating a	an attempt at finding	the derivativ	re at $\frac{\pi}{6}$.	
3. For $h'\left(\frac{\pi}{6}\right) =$	$= 3\cos\left(2\times\frac{\pi}{6}\right) = \frac{3}{2}$	award 0/3.		0	
Commonly Obse	erved Responses:				
Candidate A -3sin2x	•1 ✓	Candidate B 3sin 2x	• ¹ ×	Candidate C 3sin2x	1 x
$\dots \times \frac{1}{2}$	• ² ×	×2	• ² ✓	$\dots \times \frac{1}{2}$	2 x
$-\frac{3\sqrt{3}}{4}$	• ³ <mark>√ 1</mark>	3√3	• ³ 🖌 1	$\frac{3\sqrt{3}}{4}$	³ 1
Candidate D	1 .	Candidate E	1	Candidate F	1 .
$\pm 6\cos 2x$	•' ¥ • ² ¥	$\pm 3\cos 2x$	•' × • ² √ 1	$6 \sin 2x$	2 🗸
±3	• ³ 🖌 1	±3	• ³ 1	3√3	³ √ 1

	Question	Generic scheme	Illustrative scheme	Max mark	
4.		• ¹ state centre of circle	• ¹ (6,3)	4	
		• ² find gradient of radius	• ² -4		
		• ³ state gradient of tangent	$\bullet^3 \frac{1}{4}$		
		• ⁴ state equation of tangent	$\bullet^4 y = \frac{1}{4}x - 7$		
Not	Notes:				
1.	Accept $-\frac{8}{2}$	for ● ² .			
2. 3.	The perpend • ⁴ is only ava	dicular gradient must be simplified at t ailable as a consequence of trying to fi	he \bullet^3 or \bullet^4 stage for \bullet^3 to be available. nd and use a perpendicular gradient.		
4.	. At • ⁴ accept $y - \frac{1}{4}x + 7 = 0$, $4y = x - 28$, $x - 4y - 28 = 0$ or any other rearrangement of the				
	equation wh	here the constant terms have been simp	lified.		
Cor	nmonly Obse	erved Responses:			

	Question	Generic scheme		Illustrative scheme	Max mark	
5.	(a)	• ¹ state ratio explicitly		• ¹ 4:1	1	
Not	es:					
1. 2.	1. The only acceptable variations for • ¹ must be related explicitly to AB and BC. For $\frac{BC}{AB} = \frac{1}{4}$, $\frac{AB}{BC} = \frac{4}{1}$ or BC: AB = 1:4 award 1/1. 2. For BC = $\frac{1}{4}$ AB award 0/1.					
Cor	nmonly Obse	erved Responses:				
	(b)	• ² state value of t		• ² 8	1	
Not	es:					
3.	3. The answer to part (b) must be consistent with a ratio stated in part (a) unless a valid strategy which does not require the use of their ratio from part (a) is used.					
Cor	Commonly Observed Responses:					
Car 1:4	ndidate A	• ¹ x	Cano 1:4	didate B		
t =	0	●- ★	$\iota = 0$	•- <u>•</u> <u>1</u>		

Question	Generic scheme	Illustrative scheme	Max mark
6.	• ¹ apply $m \log_5 x = \log_5 x^m$	• $\log_5 8^{\frac{1}{3}}$	3
	• ² apply $\log_5 x - \log_5 y = \log_5 \frac{x}{y}$	• ² $\log_5\left(\frac{250}{8^{\frac{1}{3}}}\right)$	
	• ³ evaluate log	• ³ 3	
Notes:			
 Each line of working must be equivalent to the line above within a valid strategy, however see Candidate B. Do not penalise the omission of the base of the logarithm at •¹ or •². For '3' with no working award 0/3. 			
Commonly Obse	erved Responses:		
Candidate A		Candidate B	
$\log_5 250 - \log_5 \frac{8}{3}$	• ¹ x	$\frac{1}{3}\log_5(250\div8)$	
$\log_5 \frac{250}{\frac{8}{3}}$	• ² <mark>√ 1</mark>	$\frac{1}{3}\log_5\frac{125}{4}$	
$\log_5 \frac{375}{4}$	• ³ 🗸 2	$\log_5 \left(\frac{125}{4}\right)^{\frac{1}{3}}$ Award 1/3 \checkmark 1	^ *
		• ¹ is awarded final two lines of v	for the vorking

Question	Generic scheme	Illustrative scheme	Max mark		
7. (a)	• ¹ state coordinates of P	• ¹ (0,5)	1		
Notes:					
1. Accept ' $x =$ 2. ' $y = 5$ ' alon	0, $y=5$ '. e or '5' does not gain \bullet^1 .				
Commonly Obse	erved Responses:				
(b)	• ² differentiate	• ² $3x^2 - 6x + 2$	3		
	• ³ calculate gradient	• ³ 2			
	$ullet^4$ state equation of tangent	•4 $y=2x+5$			
Notes:					
 At •⁴ accept y-2x=5, 2x-y+5=0, y-5=2x or any other rearrangement of the equation where the constant terms have been simplified. •⁴ is only available if an attempt has been made to find the gradient from differentiation. 					
Commonly Obse	erved Responses:				

Question	Generic scheme	Illustrative scheme	Max mark
7. (c)	• ⁵ set $y_{\text{line}} = y_{\text{curve}}$ and arrange in standard form	$\bullet^5 x^3 - 3x^2 = 0$	4
	• ⁶ factorise	• $x^2(x-3)$	
	\bullet^7 state x-coordinate of Q	•7 3	
	• ⁸ calculate <i>y</i> -coordinate of Q	• ⁸ 11	
Notes:			
 •⁵ is only available if '= 0' appears at either •⁵ or •⁶ stage. •⁷ and •⁸ are only available as a consequence of solving a cubic equation and a linear equation simultaneously. For an answer of (3,11) with no working award 0/4. For an answer of (3,11) verified in both equations award 3/4. For an answer of (3,11) verified in both equations along with a statement such as 'same point on both line and curve so Q is (3,11) ' award 4/4. For candidates who work with a derivative, no further marks are available. x = 2 must be supported by valid working for e⁷ and e⁸ to be awarded 			
Commonly Obse	erved Responses:		
Candidate A			
$x^{3} - 3x^{2} = 0$	•• •		
x - 3 = 0	•° •		
$\begin{array}{c} x = 3 \\ y = 11 \end{array}$	• ⁸ •		
Dividing by x^2 is	s valid since $x \neq 0$ at \bullet^6		

Question	Generic scheme	Illustrative scheme n	Max nark
8.	• ¹ determine the gradient of the li	ne $\bullet^1 m = \sqrt{3}$ or $\tan \theta = \sqrt{3}$	2
	• ² determine the angle	• ² 60° or $\frac{\pi}{3}$	
Notes:			
1. Do not pena	lise the omission of units at \bullet^2 .		
2. For 60° or	$\frac{\pi}{3}$ without working award 2/2.		
Commonly Obse	erved Responses:		
Candidate A		Candidate B	
$y = \sqrt{3}x + 5$	Ignore incorrect	$m = \sqrt{3}$ • ¹ \checkmark	
	processing of the	$\theta = \tan \sqrt{3}$ • ² ×	
	constant term	$\theta = 60^{\circ}$	
$m = \sqrt{3}$	$\bullet^1 \checkmark$	Stating tan rather than \tan^{-1}	
60°	•* •	See general marking principle (g)	

Question	Generic scheme	Illustrative scheme	Max mark	
9. (a)	• ¹ identify pathway	• ¹ $-t+u$	1	
Notes:				
Commonly Obse	erved Responses:			
(b)	• ² state an appropriate pathway	• ² eg $\frac{1}{2}\overrightarrow{BC} + \overrightarrow{CA} + \overrightarrow{AD}$ stated or implied by • ³	2	
	• ³ express pathway in terms of t , u and v	$\bullet^3 -\frac{1}{2}\mathbf{t} -\frac{1}{2}\mathbf{u} + \mathbf{v}$		
Notes:				
 There is no need to simplify the expression at •³. Eg ¹/₂(-t+u)-u+v. •³ is only available for using a valid pathway. The expression at •³ must be consistent with the candidate's expression at •¹. If the pathway in •¹ is given in terms of a single vector t,u or v, then •³ is not available. 				
Commonly Observed Responses:				
$\overrightarrow{\text{MD}} = -\frac{1}{2}\mathbf{t} + \mathbf{v} - \mathbf{v}$	$\mathbf{u} \cdot \mathbf{e}^2 \wedge \mathbf{e}^3 \mathbf{x}$			

Question	Generic scheme	Illustrative scheme	Max mark
10.	• ¹ know to and integrate one term	• $eg 2x^3$	4
	• ² complete integration	• ² eg $-\frac{3}{2}x^2 + 4x + c$	
	• ³ substitute for x and y	• ³ $14 = 2(2)^3 - \frac{3}{2}(2)^2 + 4(2) + c$	
	\bullet^4 state equation	• $y = 2x^3 - \frac{3}{2}x^2 + 4x - 4$ stated explicitly	

Notes:

- 1. For candidates who make no attempt to integrate to find y in terms of x award 0/4.
- 2. For candidates who omit +c, only \bullet^1 is available.
- 3. Candidates must attempt to integrate both terms containing x for \bullet^3 and \bullet^4 to be available. See Candidate B.
- 4. For candidates who differentiate any term, $\bullet^2 \bullet^3$ and \bullet^4 are not available.
- 5. •⁴ is not available for 'f(x) = ...'.
- 6. Candidates must simplify coefficients in <u>their</u> final line of working for the last mark available in that line of working to be awarded.

Commonly Observed Responses:

Candidate A		Candidate B - partial integ	ration
$y = 2x^3 - \frac{3}{2}x^2 + 4x + c$	• ¹ ✓ • ² ✓	$y = 2x^3 - \frac{3}{2}x^2 + 4 + c$	• ¹ ✓ • ² ×
$y = 2(2)^{3} - \frac{3}{2}(2)^{2} + 4(2) + c$		$14 = 2(2)^3 - \frac{3}{2}(2)^2 + 4 + c$	• ³ 🗸 1
<i>c</i> = -4	• ³ ✓ substitution for y implied by c = -4 • ⁴ ヘ	c = 0 y = 2x ³ - $\frac{3}{2}x^{2} + 4$	• ⁴ <mark>√ 1</mark>

Question	Generic scheme	Illustrative scheme	Max mark
11. (a)	• ¹ curve reflected in <i>x</i> -axis and translated 1 unit vertically	• ¹ a generally decreasing curve above the <i>x</i> -axis for $1 < x < 3$	2
	• ² accurate sketch	• ² asymptote at $x = 0$ and passing through (3,0) and continuing to decrease for $x \ge 3$	
Notes:			
 For any attended For a single For any attended 	empt which involves a horizontal trans transformation award 0/2. Empt involving a reflection in the line	lation or reflection in the y-axis award 0 $y = x$ award 0/2	/2.
Commonly Obse	erved Responses:		
(1, -1)	(3, -2) Award 1/2		
(b)	• 3 set ' $y = y$ '	• ³ $\log_3 x = 1 - \log_3 x$	3
	• ⁴ start to solve	• $\log_3 x = \frac{1}{2}$ or $\log_3 x^2 = 1$	
	• ⁵ state <i>x</i> coordinate	• $5\sqrt{3}$ or $3^{\frac{1}{2}}$	
Notes:			
4. • ³ may be implied by $\log_3 x = \frac{1}{2}$ from symmetry of the curves.			
5. Do not penalise the omission of the base of the logarithm at \bullet^3 or \bullet^4 . 6. For a solution which equates a to $\log_3 a$, the final mark is not available.			
7. If a candidate considers and then does not discard $-\sqrt{3}$ in their final answer, \bullet^5 is not available.			
Commonly Observed Responses:			

Question	Generic scheme	Illustrative scheme	Max mark	
12. (a)	• ¹ find components		1	
Notes:				
 Accept 6i – Do not acce 	$3\mathbf{j} + (4 + p)\mathbf{k}$ for $\mathbf{\bullet}^1$. pt $\begin{pmatrix} 6\mathbf{i} \\ -3\mathbf{j} \\ (4 + p)\mathbf{k} \end{pmatrix}$ or $6\mathbf{i} - 3\mathbf{j} + 4\mathbf{k} + p\mathbf{k}$ for $6\mathbf{i} - 3\mathbf{j} + 4\mathbf{k} + p\mathbf{k} + p\mathbf{k}$ for $6\mathbf{k} + p\mathbf{k} + p\mathbf{k}$	for \bullet^1 . However \bullet^2 , \bullet^3 and \bullet^4 are still avail	able.	
Commonly Obse	erved Responses:			
(b)	• ² find an expression for magnitude	$e^{4} \sqrt{6^{2} + (-3)^{2} + (4+p)^{2}}$	3	
	• ³ start to solve	• ³ 45+(4+p) ² = 49 \Rightarrow (4+p) ² = 4 or p ² +8p+12=0		
	\bullet^4 find values of p	• ⁴ $p = -2, p = -6$		
Notes:				
 Do not pena magnitude. awarded. 4. •⁴ is only av 	3. Do not penalise candidates who treat negative signs with a lack of rigour when calculating a magnitude. Eg $\sqrt{6^2 + -3^2 + (4+p)^2}$ or $\sqrt{6^2 - 3^2 + (4+p)^2}$ leading to $\sqrt{45 + (4+p)^2}$, \bullet^2 is awarded.			
Commonly Obse	erved Responses:			
Candidate A $\begin{pmatrix} 6 \\ -3 \\ 4+p \end{pmatrix}$ $\sqrt{6^2 - 3^2 + (4+p)^2}$ $27 + (4+p)^2 = 42$ $(4+p)^2 = 22$ $p = -4 \pm \sqrt{22}$	$e^{1} \checkmark$ $e^{2} \times$ $e^{3} \checkmark 1$ $e^{4} \checkmark 1$	Candidate B $\begin{pmatrix} 6 \\ -3 \\ 4+p \end{pmatrix}$ $\sqrt{6^2 + (-3)^2 + p^2}$ $45 + p^2 = 49$ $p = \pm 2$ $e^2 \times e^3 \checkmark 2$ $e^4 \checkmark 1$		

Question	Generic scheme	Illustrative scheme	Max mark
13. (a) (i)	• ¹ find the value of $\cos x$	• ¹ $\frac{\sqrt{7}}{\sqrt{11}}$ stated or implied by • ²	3
	• ² substitute into the formula for sin2 <i>x</i>	• ² $2 \times \frac{2}{\sqrt{11}} \times \frac{\sqrt{7}}{\sqrt{11}}$	
	• ³ simplify	• ³ $\frac{4\sqrt{7}}{11}$	
(ii)	• ⁴ evaluate $\cos 2x$	• $\frac{3}{11}$	1
Notes:			
 Where a car candidate h •³ is only av Do not pena question. 	ndidate substitutes an incorrect value f as previously stated this incorrect value ailable as a consequence of substitutin lise trigonometric ratios which are less	or $\cos x$ at \bullet^2 , \bullet^2 may be awarded if the e or it can be implied by a diagram. g into a valid formula at \bullet^2 . than -1 or greater than 1 throughout t	e his
Commonly Obse	erved Responses:		
(b)	$ullet^5$ expand using the addition formula	• $\sin 2x \cos x + \cos 2x \sin x$ stated or implied by • 6	3
	• ⁶ substitute in values	• ⁶ $\frac{4\sqrt{7}}{11} \times \frac{\sqrt{7}}{\sqrt{11}} + \frac{3}{11} \times \frac{2}{\sqrt{11}}$	
	• ⁷ simplify	• ⁷ $\frac{34}{11\sqrt{11}}$	
Notes:			
4. For any attempt to use $\sin(2x+x) = \sin 2x + \sin x$, $\bullet^5 \bullet^6$ and \bullet^7 are not available			
Commonly Obse	erved Responses:		

Question	Generic scheme	Illustrative scheme	Max mark
14.	• ¹ write in integrable form	• 1 $(2x+9)^{-\frac{2}{3}}$	5
	• ² start to integrate	• ² $\frac{(2x+9)^{\frac{1}{3}}}{\frac{1}{3}}$	
	• ³ complete integration	$\bullet^3 \ldots \times \frac{1}{2}$	
	• ⁴ process limits	• $\frac{3}{2}(2(9)+9)^{\frac{1}{3}}-\frac{3}{2}(2(-4)+9)^{\frac{1}{3}}$	
	● ⁵ evaluate integral	• ⁵ 3	
Notes:			
 For candidates who differentiate throughout, only •¹ is available. For candidates who 'integrate the denominator' without attempting to write in integrable form award 0/5. •² may be awarded for the appearance of (2x+9)^{1/3}/(1/3) in the line of working where the candidate first attempts to integrate. See Candidate F. If candidates start to integrate individual terms within the bracket or attempt to expand a bracket or use another invalid approach no further marks are available. For •² to be awarded the integrand must contain a non-integer power. Do not penalise the inclusion of '+c'. •⁴ and •⁵ are not available to candidates who substitute into the original function. The integral obtained must contain a non-integer power for •⁵ to be available. •⁵ is only available to candidates who deal with the coefficient of <i>x</i> at the •³ stage. See Candidate A. 			
	erved Responses:	C	
$\begin{bmatrix} \text{Landidate A} \\ (2x+9)^{-\frac{2}{3}} \end{bmatrix}$	• ¹ 🗸	Landidate B $(2x+9)^{\frac{2}{3}}$ • ¹ x	
$\frac{(2x+9)^{\frac{1}{3}}}{\frac{1}{3}}$	• ² ✓ • ³ ∧	$\frac{(2x+9)^{\frac{5}{3}}}{\frac{5}{3}} \times \frac{1}{2} \qquad \qquad \bullet^2 \checkmark$	1 • ³ ✓
$3(2(9)+9)^{\frac{1}{3}}-3$	$(2(-4)+9)^{\frac{1}{3}}$ • ⁴ \checkmark 1	$\frac{3}{10} (2(9)+9)^{\frac{5}{3}} - \frac{3}{10} (2(-4)+9)^{\frac{5}{3}} \qquad \bullet^{4} \checkmark$	1
6	● ⁵ <mark>✓ 2</mark> see note 9	$\frac{363}{5}$ • ⁵	1

Commonly Observed Responses:			
Candidate C		Candidate D	
$(2x+9)^{-\frac{2}{3}}$	● ¹ ✓	$(2x+9)^{-\frac{2}{3}}$	● ¹ ✓
$-\frac{5}{3}(2x+9)^{-\frac{5}{3}}\times\frac{1}{2}$	• ² x • ³ ✓	$\frac{(2x+9)^{\frac{1}{3}}}{\frac{1}{3}} \times 2$	• ² 🗸 • ³ 🗴
$-\frac{5}{6}(2(9)+9)^{-\frac{5}{3}}-\left(-\frac{5}{6}(2(-4)+9)^{-\frac{5}{3}}\right)$	• ⁴ <mark>✓ 1</mark>	$6(2(9)+9)^{\frac{1}{3}}-6(2(-4)+9)^{\frac{1}{3}}$	• ⁴ 🖌 1
605 729	● ⁵ <mark>✓ 1</mark>	12	● ⁵ <mark>✓ 1</mark>
Candidate E		Candidate F	
$(2x+9)^{-\frac{3}{2}}$	• ¹ x	$1 \times (2x + 9)^{-\frac{2}{3}}$	• ¹ 🗸
$\frac{(2x+9)^{-\frac{1}{2}}}{-\frac{1}{2}} \times \frac{1}{2}$	• ² <mark>✓ 1</mark> • ³ ✓	$x \frac{(2x+9)^{\frac{1}{3}}}{\frac{1}{3}} \times \frac{1}{2}$	•2 🗸
$\left(-\left(2(9)+9\right)^{-\frac{1}{2}}\right)-\left(-\left(2(-4)+9\right)^{-\frac{1}{2}}\right)$	• ⁴ <mark>✓ 1</mark>	$\bullet^3 \bullet^4$ and \bullet^5 are	not available
$-\frac{1}{\sqrt{27}}+1$	● ⁵ <mark>✓ 1</mark>		

Question	Generic scheme	Illustrative scheme	Max mark
15.	• ¹ root at $x = -4$ identifiable from graph	● ¹	4
	• ² stationary point touching <i>x</i> -axis when $x = 2$ identifiable from graph	• ²	
	• ³ stationary point when $x = -2$ identifiable from graph	• ³	
	• ⁴ identify orientation of the cubic curve and $f'(0) > 0$ identifiable from graph	•4	
Notes:			
 For a diagram which does not show a cubic curve award 0/4. For candidates who identify the roots of the cubic at 'x = -4, -2 and 2' or at 'x = -2, 2 and 4' •⁴ is unavailable. 			
Commonly Obse	erved Responses:		

[END OF MARKING INSTRUCTIONS]

Qualifications

2018 Mathematics

Higher - Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2018

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments. This publication must not be reproduced for commercial or trade purposes.

General marking principles for Higher Mathematics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

For each question, the marking instructions are generally in two sections:

- generic scheme this indicates why each mark is awarded
- illustrative scheme this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.

- (a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
- (b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
- (c) One mark is available for each •. There are no half marks.
- (d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
- (e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
- (f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
- (g) If an error is trivial, casual or insignificant, for example $6 \times 6 = 12$, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.
- (h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above

(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

Horizontal: ${}^{6}x = 2$ and x = -4 ${}^{6}y = 5$ y = -7Horizontal: ${}^{6}x = 2$ and x = -4 ${}^{6}y = 5$ and y = -7Vertical: ${}^{6}x = 2$ and y = 5 ${}^{6}x = -4$ and y = -7

You must choose whichever method benefits the candidate, **not** a combination of both.

(j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example

$\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1\frac{1}{4}$	$\frac{43}{1}$ must be simplified to 43
$\frac{15}{0\cdot 3}$ must be simplified to 50	$\frac{\frac{4}{5}}{3}$ must be simplified to $\frac{4}{15}$
$\sqrt{64}$ must be simplified to 8*	

*The square root of perfect squares up to and including 100 must be known.

- (k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
- (I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:
 - working subsequent to a correct answer
 - correct working in the wrong part of a question
 - legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
 - omission of units
 - bad form (bad form only becomes bad form if subsequent working is correct), for example

 $(x^{3}+2x^{2}+3x+2)(2x+1)$ written as $(x^{3}+2x^{2}+3x+2)\times 2x+1$ $= 2x^{4}+5x^{3}+8x^{2}+7x+2$ gains full credit

- repeated error within a question, but not between questions or papers
- (m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.
- (n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.

- (o) You should mark legible scored-out working that has not been replaced. However, if the scored-out working has been replaced, you must only mark the replacement working.
- (p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Detailed marking instructions for each question

Question	Generic scheme	Illustrative scheme	Max mark
1.	 ¹ state an integral to represent t shaded area 	he $\int_{-1}^{3} (3+2x-x^2) dx$	4
	• ² integrate	• ² $3x + \frac{2x^2}{2} - \frac{x^3}{3}$	
	• ³ substitute limits	$\bullet^3 \left(3 \times 3 + \frac{2 \times 3^2}{2} - \frac{3^3}{3} \right)$	
		$-\left(3\times\left(-1\right)+\frac{2\times\left(-1\right)^{2}}{2}-\frac{\left(-1\right)^{3}}{3}\right)$	
	• ⁴ evaluate integral	• $\frac{32}{3}$ (units ²)	
Notes:			
 •¹ is not available to candidates who omit 'dx'. Limits must appear at the •¹ stage for •¹ to be awarded. Where a candidate differentiates one or more terms at •², then •³ and •⁴ are unavailable. Candidates who substitute limits without integrating, do not gain •³ or •⁴. Do not penalise the inclusion of '+c'. Do not penalise the continued appearance of the integral sign after •¹. If •⁴ is only given as a decimal then it must be given correct to 1 decimal place 			
Commonly Obse	erved Responses:		
Candidate A $\int_{-3}^{3} 3 + 2x - x^2$	• ¹ x	Candidate B $\int (3+2x-x^2) dx \qquad \bullet^1 \mathbf{x}$	
$= 3x + \frac{2x^2}{2} - \frac{x^3}{3}$	• ² 🗸	$=3x+\frac{2x^2}{2}-\frac{x^3}{3}$	
22	• ³ ^	$=9-\left(-\frac{5}{3}\right)$	
$=\frac{32}{3}$	• ⁴ <mark>✓ 1</mark>	$=\frac{32}{3}$	

Commonly Observed Responses:			
Candidate C		Candidate D	
$\int (3+2x-x^2) dx$	• ¹ 🗴	$\int_{-1}^{-1} (3+2x-x^2) dx$	• ¹ 🗸
$=3x+\frac{2x^2}{2}-\frac{x^3}{3}$	• ² 🗸	3 	• ² ✓• ³ ✓
$=\left(3\times 3+\frac{2\times 3^2}{2}-\frac{3^3}{3}\right)$		$=-\frac{32}{3}$, hence area is $\frac{32}{3}$	•4 🗸
$-\left(3\times(-1)+\frac{2\times(-1)^2}{2}-\frac{(-1)^3}{3}\right)$	•3 🗸	However $-\frac{32}{3} = \frac{32}{3}$ does not gain	• ⁴ .
$=\frac{32}{3}$	•4 🗸		

	Question	Generic scheme	Illustrative scheme	Max mark		
2.	(a)	• ¹ find u.v	• ¹ 24	1		
Not	tes:	•				
Cor	nmonly Obse	erved Responses:				
	(b)	• ² find $ \mathbf{u} $	• ² $\sqrt{26}$	4		
		• ³ find $ \mathbf{v} $	• ³ \sqrt{138}			
		• ⁴ apply scalar product	• ⁴ $\cos \theta^{\circ} = \frac{24}{\sqrt{26}\sqrt{138}}$			
		● ⁵ calculate angle	• ⁵ 66.38° or 1.16radians	1		
Not	tes:					
1.	Do not pena	lise candidates who treat negative sig	ns with a lack of rigour when calculating	a		
	magnitude.	Eg $\sqrt{-1^2 + 4^2 - 3^2} = \sqrt{26}$ or $\sqrt{-1^2 + 4^2}$	$4^2 + -3^2 = \sqrt{26}$, \bullet^2 is awarded.			
2.	• ⁴ is not ava	ilable to candidates who simply state	the formula $\cos \theta^{\circ} = \frac{\mathbf{u} \cdot \mathbf{v}}{ \mathbf{u} \mathbf{v} }$.			
3.	Accept answ	vers which round to 66° or 1.2 radians	(or 73.8 gradians).			
4. 5.	 Do not pena •⁵ is only av 	ailable for a single angle.	nits.			
6.	For a correc	t answer with no working award 0/4.				
Cor	Commonly Observed Responses:					
Car	Candidate A					
 u :	$ \mathbf{u} = \sqrt{26}$ $\bullet^2 \checkmark$					
$ \mathbf{v} = \sqrt{138} \qquad \qquad \mathbf{\bullet}^3 \checkmark$						
	$\frac{24}{6\sqrt{138}}$	•4 ^				
$\theta =$	= 66 · 38…°	• ⁵ 🖌 1				

Question	Generic scheme	Illustrative scheme	Max mark			
3.	• ¹ differentiate	• $3x^2 - 7$	3			
	• ² evaluate derivative at $x = 2$	• ² 5				
	• ³ interpret result	• ³ $(f \text{ is})$ increasing				
Notes:						
1. \bullet^2 and \bullet^3 are 2. Accept $f'(2)$ 3. $f'(x) > 0$ v candidate B 4. Do not pena	 •² and •³ are only available as a consequence of working with a derivative. Accept f'(2)>0 for •². f'(x)>0 with no evidence of evaluating the derivative at x=2 does not gain •² or •³. See candidate B. Do not penalise candidates who use y in place of f(x). 					
Commonly Obse	erved Responses:					
Candidate ACandidate B $3x^2 - 7$ $\bullet^1 \checkmark$ $3x^2 - 7$ $\frac{x}{f'(x)}$ $+$ $\bullet^2 \checkmark$ $f'(x) > 0$ increasing $\bullet^3 \checkmark$ f is increasing		Candidate B $3x^2 - 7$ $\bullet^1 \checkmark$ $f'(x) > 0$ $\bullet^2 \land$ f_1 is increasing $\bullet^3 \land$				
increasing	●」 ✓					

Question	Generic scheme	Illustrative scheme	Max mark	
4.	Method 1	Method 1	3	
	• ¹ identify common factor	• ¹ $-3(x^2 + 2x$ stated or implied by • ²		
	• ² complete the square	• ² $-3(x+1)^2$		
	\bullet^3 process for c	• ³ -3(x+1) ² +10		
	Method 2	Method 2		
	• ¹ expand completed square form	• ¹ $ax^2 + 2abx + ab^2 + c$		
	• ² equate coefficients	• ² $a = -3$, $2ab = -6$ $ab^{2} + c = 7$		
	• ³ process for b and c and write in required form	• ³ $-3(x+1)^2+10$		
Notes:				
1. $-3(x+1)^2 +$ 2. \bullet^3 is only av	10 with no working gains \bullet^1 and \bullet^2 or ailable for a calculation involving bot	nly; however, see Candidate E. Th multiplication and addition of integers.		
Commonly Observed Responses:				
Candidate A $-3(x^{2}+2)+7$ $-3((x+1)^{2}-1)+$	exception in General marking principle (h) -7 $\bullet^1 \checkmark \bullet^2 \checkmark$	andidate B $-3((x^2-6x)+7)$ $\bullet^1 \times$ $-3((x-3)^2-9)+7$ $\bullet^2 \checkmark 1$]	

$-3((x+1)^{2}-1)+7$ $-3(x+1)^{2}+10$	• ³ ✓	$-3(x-3)^2+34$	• ³ <mark>√ 1</mark>
Candidate C		Candidate D	
$a(x+b)^{2} + c = ax^{2} + 2abx + ab^{2} + c$	• ¹ 🗸	$ax^2 + 2abx + ab^2 + c$	• ¹ 🗸
$a = -3$, $2ab = -6$, $ab^2 + c = 7$	• ² ✓	$a = -3$, $2ab = -6$, $ab^2 + c = 7$	• ² ✓
b = 1, c = 10	• ³ 🗸	b = 1, c = 10	• ³ ×
• ³ is awarded as all working relates to completed square form		• ³ is lost as no reference is made to completed square form	

Commonly Observed Responses:				
Candidate E		Candidate F		
$-3(x+1)^{2}+10$		$-3x^2-6x+7$		
Check: $= -3(x^2 + 2x + 1) + 10$		$=-3(x+1)^2-1+7$	$\bullet^1 \checkmark \bullet^2 \checkmark$	
$=-3x^2-6x-3+10$		$=-3(x+1)^{2}+6$	• ³ ×	
$=-3x^2-6x+7$				
Award 3/3				
Candidate G				
$-3x^2-6x+7$				
$=x^2+2x-\frac{7}{3}$	• ¹ x			
$=(x+1)^2-\frac{10}{3}$	• ² ×			
$=-3(x+1)^{2}+10$	• ³ x			

Question	Generic scheme	Illustrative scheme	Max mark	
5. (a)	• ¹ find the midpoint of PQ	• ¹ (6,1)	3	
	• ² calculate m_{PQ} and state perp. gradient	• ² $-1 \Rightarrow m_{perp} = 1$		
	• ³ find equation of L ₁ in a simplified form	• ³ $y = x - 5$		
Notes:			ł	
 •³ is only av The gradien to be award At •³, accep constant ter 	ailable as a consequence of using a pert of the perpendicular bisector must aped. t $x-y-5=0$, $y-x=-5$ or any other must have been simplified.	pendicular gradient and a midpoint. opear in simplified form at • ² or • ³ stage rearrangement of the equation where t	e for ● ³ the	
Commonly Obse	erved Responses:			
			1	
(b)	• ⁴ determine y coordinate	• ⁴ 5	2	
	• ⁵ state x coordinate	• ⁵ 10		
Notes:			<u> </u>	
Commonly Obse	erved Responses:			
(c)	• ⁶ calculate radius of the circle	• ⁶ $\sqrt{50}$ stated or implied by • ⁷	2	
	• ⁷ state equation of the circle	• ⁷ $(x-10)^2 + (y-5)^2 = 50$		
Notes:				
 Where candidates have calculated the coordinates of C incorrectly, •⁶ and •⁷ are available for using either PC or QC for the radius. Where incorrect coordinates for C appear without working, only •⁷ is available. Do not accept (√50)² for •⁷. 				
Commonly Observed Responses:				

Question		on	Generic scheme	Illustrative scheme	Max mark
6.	(a)	(i)	• ¹ start composite process	• ¹ $f(2x)$	2
			• ² substitute into expression	\bullet^2 3+cos2x	
		(ii)	• ³ state second composite	• ³ 2(3+cos x)	1
Not	es:				
1. 2.	For 3 Candie gain a	+ cos2 dates ny ma	$2x$ without working, award both \bullet^1 a who interpret the composite functio rks.	and \bullet^2 . n as either $g(x) \times f(x)$ or $g(x) + f(x)$ do	not
Con	nmonly	y Obse	erved Responses:		
Can	Candidate A - interpret $f(g(x))$ as $g(f(x))$ Candidate B - interpret $f(g(x))$ as $g(f(x))$				x))
(i) 2	(i) $2(3 + \cos x)$ • ¹ × • ² ✓ 1 (i) $f(2x) = 2(3 + \cos x)$ • ¹ ✓ • ² ×				
(ii)	(ii) $3 + \cos 2x$ $\bullet^3 \checkmark 1$ (ii) $3 + \cos(2x)$ $\bullet^3 \checkmark 1$				

Question	Generic scheme	Illustrative scheme	Max mark
6. (b)	\bullet^4 equate expressions from (a)	$\bullet^4 3 + \cos 2x = 2(3 + \cos x)$	6
	• ⁵ substitute for $\cos 2x$ in equation	• ⁵ 3+2cos ² x-1=2(3+cos x)	
	• ⁶ arrange in standard quadratic form	• $2\cos^2 x - 2\cos x - 4 = 0$	
	• ⁷ factorise	• ⁷ $2(\cos x-2)(\cos x+1)$	
		• ⁸ • ⁹	
	• ⁸ solve for $\cos x$	• ⁸ $\cos x = 2$ $\cos x = -1$	
	• ⁹ solve for x	• $cos x = 2$ $x = \pi$	
		or eg 'no solution'	

Notes:

- 3. Do not penalise absence of common factor at \bullet^7 .
- 4. •⁵ cannot be awarded until the equation reduces to a quadratic in $\cos x$.
- 5. Substituting $2\cos^2 A 1$ or $2\cos^2 \alpha 1$ at \bullet^5 stage should be treated as bad form provided the equation is written in terms of x at \bullet^6 stage. Otherwise, \bullet^5 is not available.
- 6. = 0 must appear by \bullet^7 stage for \bullet^6 to be awarded. However, for candidates using the quadratic formula to solve the equation, = 0 must appear at \bullet^6 stage for \bullet^6 to be awarded.
- 7. For candidate who do not arrange in standard quadratic form, eg $-2\cos x + 2\cos^2 x 4 = 0$ •⁶ is only available if •⁷ has been awarded.
- 8. $\bullet^7 \bullet^8$ and \bullet^9 are only available as a consequence of solving a quadratic with distinct real roots.
- 9. •⁷ •⁸ and •⁹ are not available for any attempt to solve a quadratic equation written in the form $ax^2 + bx = c$.
- 10. •⁹ is not available to candidates who work in degrees and do not convert their solution(s) into radian measure.
- 11. Answers written as decimals should be rounded to no fewer than 2 significant figures.
- 12. •⁹ is not available for any solution containing angles outwith the interval $0 \le x < 2\pi$.

Commonly Observed Responses:			
Candidate C	Candidate D		
Quadratic expressed in terms of c or x .	$3 + \cos 2x = 2(3 + \cos x)$	●4 ✓	
$3 + \cos 2x = 2(3 + \cos x) \qquad \qquad \bullet^4 \checkmark$	$3+2\cos^2 x-1=2(3+\cos x)$	●5 ✓	
$3 + 2\cos^2 x - 1 = 2(3 + \cos x)$ • ⁵ ✓	$2\cos^2 x - 2\cos x - 4$	_ 6 ∧	
$2\cos^2 x - 2\cos x - 4 = 0 \qquad \qquad \bullet^6 \checkmark$	$\cos^2 x - \cos x = 2$	-	
$2c^2 - 2c - 4 = 0$	$\cos x (\cos x - 1) = 2$	• ⁷ 🖌 2	
2(c-2)(c+1) = 0 • ⁷ ✓	$\cos x = 2$, $\cos x - 1 = 2$		
$c = 2$, $c = -1$ $\bullet^8 \times$	$\cos x = 2, \cos x = 3$	• ⁸ 🗴	
no solution, $x = \pi$ •9 \checkmark	no solutions	•9 🗴	
However, $\bullet^4 \checkmark \bullet^5 \checkmark \bullet^6 \checkmark$ $2(c-2)(c+1) = 0$ $\bullet^7 \checkmark$	see note 9		
$\cos x = 2$ $\cos x = -1$ $\bullet^8 \checkmark$			
Solution stated in terms of $\cos x$ explicitly			
Candidate E - reading $\cos 2x$ as $\cos^2 x$	Candidate F - using quadratic formula	1	
$3 + \cos^2 x = 2(3 + \cos x) \qquad \qquad \bullet^4 x$		6	
• ⁵ ^ - no substitution required	$2\cos x - 2\cos x - 4 = 0$	• •	
$ \begin{array}{c} \cos^2 x - 2\cos x - 3 = 0 \\ (\cos x - 3)(\cos x + 1) \end{array} \qquad \bullet^6 \checkmark 1 \\ \bullet^7 \checkmark 1 \end{array} $	$\cos x = \frac{2 \pm \sqrt{36}}{4}$ or $\cos x = \frac{1 \pm \sqrt{9}}{2}$	• ⁷ ✓	
$\cos x = 3, \cos x = -1 \qquad \qquad \bullet^8 \checkmark 1$			
no solution, $x = \pi$ • $9 \checkmark 1$			

Q	uestio	on	Generic scheme	Illustrative scheme	Max mark
7.	(a)	(i)	 ¹ use '2' in synthetic division or in evaluation of cubic ² complete division/evaluation and interpret result 	• ¹ 2 2 -3 -3 2 or $2 \times (2)^3 - 3(2)^2 - 3 \times (2) + 2$ • ² 2 2 2 -3 -3 2 <u>4 2 -2</u> 2 1 -1 0 Remainder = 0 $\therefore (x-2)$ is a factor or $f(2) = 0 \therefore (x-2)$ is a factor	2
		(ii)	• ³ state quadratic factor	• $^{3} 2x^{2} + x - 1$	2
			• ⁴ complete factorisation	• $(x-2)(2x-1)(x+1)$ stated explicitly	
Note	es:				
3.	 Communication at •² must be consistent with working at that stage i.e. a candidate's working must arrive legitimately at 0 before •² can be awarded. Accept any of the following for •² : • f(2)=0 so (x-2) is a factor' • 'since remainder = 0, it is a factor' • the 0 from any method linked to the word 'factor' by e.g. 'so', 'hence', '', '→', '⇒' Do not accept any of the following for •²: • double underlining the zero or boxing the zero without comment • 'x = -2 is a factor', '(x+2) is a factor', '(x+2) is a root', 'x = 2 is a root', '(x-2) is a root', 'x = -2 is a root' 				
Com	monly	/ Obse	erved Responses:		
7.	(b)		• ⁵ demonstrate result	• ⁵ $u_6 = a(2a-3)-1=2a^2-3a-1$ leading to $u_7 = a(2a^2-3a-1)-1$ $= 2a^3-3a^2-a-1$	1
Note	es:				
		_			
Com	monly	/ Obse	erved Responses:		

Question	Generic scheme		Illustrative scheme	Max mark
7. (c) (i)	• ⁶ equate u_5 and u_7 and arrang standard form	e in	• $2a^3 - 3a^2 - 3a + 2 = 0$ • $a = 2, a = \frac{1}{2}, a = -1$	3
	 Solve Cubic ⁸ discard invalid solutions for a 	а	$\bullet^8 a = \frac{1}{2}$	
(ii)	• ⁹ calculate limit		•9 -2	1
Notes:				
 4. Where •⁶ ha However, se factorising t solutions ap 5. •⁸ is only av 	s been awarded, • ⁷ is available f ee Candidates B and C. BEWARE: he cubic obtained in c(i) and do pearing in a(ii). ailable as a result of a valid strat	or solu Candic so inco tegy at	ations in terms of x appearing in a(ii). dates who make a second attempt at prrectly cannot be awarded mark 7 for $x \cdot x^{7}$.	
$6 r = \frac{1}{2}$ does	not gain e ⁸			
$\begin{bmatrix} 0. & x \\ & 2 \end{bmatrix}$	not gain • .			
7. For candida approach, u	tes who do not state the cubic equivalence of x found in a(ii)	uatioı), may	n at •°, and adopt a guess and check gain 3/3. See Candidate D.	
Commonly Obse	erved Responses:			
Candidate A		Car	ndidate B - missing ' = 0 ' from equation	n
$2a^3 - 3a^2 - 3a +$	2=0 • ⁶ ✓	$2a^3$	$a^{3}-3a^{2}-3a+2$ • ⁶	^
$x = 2, x = \frac{1}{2}, x$	$=-1$ in a(ii) $\bullet^7 \checkmark \bullet^8 \land$	J'	$=2, x = \frac{1}{2}, x = -1$ in a(ii) \bullet^7	✓ 1
		<i>a</i> =	$=\frac{1}{2}$ • ⁸	✓ 1
Candidate C - missing ' $= 0$ ' from equation			ndidate D - $x = -1$, $x = \frac{1}{2}$ and $x = 2$ ntified in a(ii)	
$2a^3 - 3a^2 - 3a +$	2 •6 ^	<i>u</i> ₅ :	$=2\left(\frac{1}{2}\right)-3=-2$	✓
$x = 2, x = \frac{1}{2}, 1$	$x = -1$ in a(ii) $\bullet^7 \land$	<i>u</i> ₇ :	$=2\left(\frac{1}{2}\right)^{3}-3\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)-1=-2$ • ⁷	✓
$\frac{1}{2}$	No clear link between a and r	a =	$= \frac{1}{2} \text{ because } -1 < a < 1 \qquad \bullet^8$	✓
		•	L	

Question	Generic scheme	Illustrative scheme	Max mark
8. (a)	• ¹ use compound angle formula	• ¹ $k \cos x^{\circ} \cos a^{\circ} + k \sin x^{\circ} \sin a^{\circ}$ stated explicitly	4
	• ² compare coefficients	• ² $k \cos a^\circ = 2$ and $k \sin a^\circ = -1$ stated explicitly	
	• ³ process for k	• ³ $k = \sqrt{5}$	
	• ⁴ process for <i>a</i> and express in required form	• ⁴ $\sqrt{5}\cos(x-333\cdot4)^\circ$	

Notes:

- Accept $k(\cos x^{\circ} \cos a^{\circ} + \sin x^{\circ} \sin a^{\circ})$ for \bullet^{1} . Treat $k \cos x^{\circ} \cos a^{\circ} + \sin x^{\circ} \sin a^{\circ}$ as bad form only 1. if the equations at the \bullet^2 stage both contain k.
- 2. Do not penalise the omission of degree signs.
- $\sqrt{5}\cos x^{\circ}\cos a^{\circ} + \sqrt{5}\sin x^{\circ}\sin a^{\circ}$ or $\sqrt{5}(\cos x^{\circ}\cos a^{\circ} + \sin x^{\circ}\sin a^{\circ})$ is acceptable for \bullet^{1} and \bullet^{3} . 3.
- •² is not available for $k \cos x^\circ = 2$, $k \sin x^\circ = -1$, however •⁴ may still be gained. •³ is only available for a single value of k, k > 0. 4.
- 5.
- 6. \bullet^4 is not available for a value of *a* given in radians.
- 7. Accept any value of a which rounds to 333°
- 8. Candidates may use any form of the wave function for \bullet^1 , \bullet^2 and \bullet^3 , however, \bullet^4 is only available if the wave is interpreted in the form $k\cos(x-a)^{\circ}$.
- 9. Evidence for \bullet^4 may not appear until part (b).

Commonly Observed Responses:

Responses with missing information in working:

Candidate A	Candidate B	Candidate C
• ¹ ^	$k\cos x^{\circ}\cos a^{\circ} + k\sin x^{\circ}\sin a^{\circ} \bullet^{1}\checkmark$	$\cos x^{\circ} \cos a^{\circ} + \sin x^{\circ} \sin a^{\circ} \bullet^{1} \star$
$\sqrt{5}\cos a^\circ = 2$	$\cos a^{\circ} = 2$ $\sin a^{\circ} = -1$ $\bullet^{2} \times$	$\cos a^{\circ} = 2$ $\sin a^{\circ} = -1$ $\bullet^{2} \times$
$\sqrt{5} \sin a^\circ = -1$ $\bullet^2 \checkmark \bullet^3$		_
	$\tan a^\circ = -\frac{1}{2}$ [Not consistent]	$k = \sqrt{5}$ • ³ ✓
$\tan a^\circ = -\frac{1}{2}$	$a = 333 \cdot 4$ and $a = 333 \cdot 4$ with equations at \bullet^2 .	$\tan a^\circ = -\frac{1}{2}$
$a = 333 \cdot 4$	$\sqrt{5}\cos(x-333\cdot 4)^\circ$ $\bullet^3\checkmark \bullet^4$	$a = 333 \cdot 4$
$\sqrt{5}\cos(x-333\cdot4)^\circ$ • ⁴ ✓		$\sqrt{5}\cos(x-333\cdot4)^\circ$ • ⁴ ×

Responses with the correct expansion of $k \cos(x-a)^\circ$ but errors for either \bullet^2 or \bullet^3 : Candidate F Candidate D Candidate E $k\cos x^{\circ}\cos a^{\circ} + k\sin x^{\circ}\sin a^{\circ} \bullet^{1}$ $k\cos x^{\circ}\cos a^{\circ} + k\sin x^{\circ}\sin a^{\circ} \bullet^{1} \checkmark$ $k\cos x^{\circ}\cos a^{\circ} + k\sin x^{\circ}\sin a^{\circ} \quad \bullet^{1}$ $k\cos a^\circ = -1$ 1 \checkmark $k\cos a^\circ = 2$ •2 🗶 $k\cos a^\circ = 2$ $k \sin a^\circ = 2$ •² 🗸 •² 🗴 $k \sin a^\circ = -1$ $k \sin a^\circ = 1$ $\tan a^\circ = -2$ •³ ∧ •⁴ **x** a = 116.6 $\tan a^\circ = -2$ $\tan a^\circ = \frac{1}{2}$ $a = 296 \cdot 6$ $a = 26 \cdot 6$ $\sqrt{5}\cos(x-116\cdot 6)^\circ$ •³ \checkmark •⁴ \checkmark 1 $\sqrt{5}\cos(x-26\cdot 6)^\circ$ $\bullet^3\checkmark \bullet^4\checkmark 1$

Commonly Observed Responses:

Responses with the incorrect labelling, $k(\cos A \cos B + \sin A \sin B)$ from the formula list:

Candidate H	Candidate I
$k\cos A\cos B + k\sin A\sin B$ • ¹ *	$k\cos A\cos B + k\sin A\sin B \bullet^1 x$
$k \cos x^{\circ} = 2$ $k \sin x^{\circ} = -1 \qquad \bullet^{2} \bigstar$	$k \cos B^{\circ} = 2$ $k \sin B^{\circ} = -1 \qquad \bullet^{2} \bigstar$
$\tan x^{\circ} = -\frac{1}{2}$ $x = 333 \cdot 4$	$\tan B^{\circ} = -\frac{1}{2}$ $B = 333 \cdot 4$
$\sqrt{5}\cos(x-333\cdot4)^\circ \bullet^3 \checkmark \bullet^4 \checkmark 1$	$\sqrt{5}\cos(x-333\cdot4)^\circ \bullet^3 \checkmark \bullet^4 \checkmark 1$
	Candidate H $k \cos A \cos B + k \sin A \sin B \bullet^{1} \times$ $k \cos x^{\circ} = 2$ $k \sin x^{\circ} = -1 \bullet^{2} \times$ $\tan x^{\circ} = -\frac{1}{2}$ $x = 333 \cdot 4$ $\sqrt{5} \cos(x - 333 \cdot 4)^{\circ} \bullet^{3} \checkmark \bullet^{4} \checkmark 1$

Quest	ion	Generic scheme	Illustrative scheme	Max mark	
8. (b)	(i)	$ullet^5$ state minimum value	• ⁵ $-3\sqrt{5}$ or $-\sqrt{45}$	1	
	(ii)	Method 1	Method 1	2	
		• ⁶ start to solve	• $x - 333 \cdot 4 = 180$ leading to $x = 513 \cdot 4$		
		• ⁷ state value of x	• ⁷ $x = 153 \cdot 4 \dots$		
		Method 2	Method 2		
		• ⁶ start to solve	• ⁶ $x - 333 \cdot 4 = -180$		
		\bullet^7 state value of x	• ⁷ $x = 153 \cdot 4 \dots$		
Notes:					
10. ● ⁷ is a 11. ● ⁷ is a	10. • ⁷ is only available for a single value of x . 11. • ⁷ is only available in cases where $a < -180$ or $a > 180$. See Candidate J				
Common	Commonly Observed Responses:				
Candidate J - from $\sqrt{5}\cos(x-26\cdot6)^{\circ}$ $x-26\cdot6=180$ $x=206\cdot6$ $\bullet^{6} \checkmark 1 \bullet^{7} \checkmark 2$ Similarly for $\sqrt{5}\cos(x-116\cdot6)^{\circ}$		$\sqrt{5}\cos(x-26\cdot6)^{\circ}$ • ⁶ \checkmark 1 • ⁷ \checkmark 2 $\cos(x-116\cdot6)^{\circ}$	Candidate K - from 'minimum' of eg $-\sqrt{5}$ $3\sqrt{5}\cos(x-333\cdot4)^\circ = -\sqrt{5}$ $\cos(x-333\cdot4)^\circ = -\frac{1}{3}$ $x-333\cdot4 = 109\cdot5, 250\cdot5$ $x = 442\cdot9, 583\cdot9$ $x = 82\cdot9, 223\cdot9$ e^6	<u>√ 1</u> ×	

Question	Generic scheme	Illustrative scheme	Max mark
9.	• ¹ express P in differentiable form	$\bullet^{-1} 2x + 128x^{-1}$	6
	• ² differentiate	• ² 2 - $\frac{128}{x^2}$	
	• ³ equate expression for derivative to 0	• $3 2 - \frac{128}{x^2} = 0$	
	• ⁴ process for x	• ⁴ 8	
	• ⁵ verify nature	 •⁵ table of signs for a derivative (see next page) ∴ minimum 	
		or $P''(8) = \frac{1}{2} > 0$ \therefore minimum	
	• ⁶ evaluate <i>P</i>	• ⁶ $P = 32$ or min value = 32	
Notes:			
 For a numerical approach award 0/6. For candidates who integrate any term at the •² stage, only •³ is available on follow through for setting their 'derivative' to 0. •⁴, •⁵ and •⁶ are only available for working with a derivative which contains an index ≤ -2. At •² accept 2-128x⁻². Ignore the appearance of -8 at •⁴. √(128)/2 must be simplified at •⁴ or •⁵ for •⁴ to be awarded. •⁵ is not available to candidates who consider a value of x ≤ 0 in the neighbourhood of 8. •⁶ is still available in cases where a candidate's table of signs does not lead legitimately to a minimum at •⁵. 			
of x.			
Commonly Observed Responses:			
Candidate A - d one line	ifferentiating over more than c	Candidate B - differentiating over more t one line	han
	• ¹ ^	$P(x) = 2x + 128x^{-1} \qquad \bullet^1 \checkmark$	
$ \begin{array}{c} P'(x) = 2 + 128x \\ P'(x) - 2 - 128x \end{array} $	2 • ² •	$P'(x) = 2 + 128x^{-1}$	
$2 - 128x^{-2} = 0$	• • • • • • • • • • • • • • • • • • •	$P'(x) = 2 - 128x^{-2}$ • ² *	
		$2 - 128x^{-} = 0 \qquad \qquad \bullet^{3} \checkmark 1$	

Table of signs for a derivative

Accept:

Here, for exemplification, tables of signs considering both roots separately have been displayed. However, in this question, it was only expected that candidates would consider the positive root for \bullet^5 . Do not penalise the consideration of the negative root.

Since the function is discontinuous ' $-8 \rightarrow 8$ ' is not acceptable.

General Comments:

- For this question do not penalise the omission of 'x' or the word 'shape'/'slope'.
- Stating values of P'(x) in the table is an acceptable alternative to writing '+' or '-' signs. Values must be checked for accuracy.
 - The only acceptable variations of P'(x) are: P', $\frac{dP}{dx}$ and $2 \frac{128}{x^2}$.

Question	Generic scheme	Illustrative scheme	Max mark	
10.	• ¹ use the discriminant	• ¹ $(m-3)^2 - 4 \times 1 \times m$	4	
	• ² identify roots of quadratic expression	• ² 1, 9		
	• ³ apply condition	• ³ $(m-3)^2 - 4 \times 1 \times m > 0$		
	• ⁴ state range with justification	• $m < 1, m > 9$ with eg sketch or table of signs		
Notes:				
 If candidate then •³ is lo 	1. If candidates have the condition 'discriminant < 0', 'discriminant \leq 0' or 'discriminant \geq 0', then \bullet^3 is lost but \bullet^4 is available.			
2. Ignore the a applied.	ppearance of $b^2 - 4ac = 0$ where the $ac = 0$	correct condition has subsequently been		
3. For candida	tes who have identified expressions for	c a , b , and c and then state $b^2 - 4ac > b^2$	0	
4. For the app	4. For the appearance of x in any expression for \bullet^1 , award 0/4.			
Commonly Obse	Commonly Observed Responses:			
Candidate A $(m-3)^2 - 4 \times 1 \times$	m •1 •			
$\binom{m-3}{m^2-10m+9} = 0$				
m = 1, m = 9	•2 🗸			
$b^2 - 4ac > 0$	•3 ✓			
m < 1, m > 9	•4 ^			
Expressions for a , b , and c implied at \bullet^1				

Question	Generic scher	me	Illustrative scheme	Max mark	
11. (a)	• ¹ substitute for P and r	t	• $1 50 = 100(1 - e^{3k})$	4	
	• ² arrange equation in the $A = e^{kt}$	he form	• ² $0 \cdot 5 = e^{3k}$ or $-0 \cdot 5 = -e^{3k}$		
	• ³ simplify		• ³ $\ln 0.5 = 3k$		
	• ⁴ solve for k		• $k = -0.231$		
Notes:					
 •² may be as Any base ma Accept any a •³ must be c For candidat Where cand 	 •² may be assumed by •³. Any base may be used at •³ stage. See Candidate D. Accept any answer which rounds to -0.2. •³ must be consistent with the equation of the form A = e^{kt} at its first appearance. For candidates whose working would (or should) arrive at log(negative) •⁴ is not available. Where candidates use a 'rule' masquerading as a law of logarithms. •³ and •⁴ is not available. 				
Commonly Obse	erved Responses:				
Candidate A $50 - 100(1 - e^{3k})$	1	Car	ndidate B $5-100(1-e^{3k})$	*	
$0.5 = -e^{3k}$ $\ln(0.5) = 3k$ k = -0.231 68.5 31.5% still queue	, • ² • ³ • ⁴ • ⁵ 2ing	$ \begin{array}{c} \mathbf{v} & 0 \cdot \mathbf{x} \\ \mathbf{v} & 0 \cdot \mathbf{x} \\ 0 \cdot \mathbf$	$P_{95} = e^{3k}$ $P_{95} = e^{3k}$ $= -0.0017$ $= 0.8319$ $P_{95} = 3k$ $= -0.0017$ $P_{95} = 3k$	✓ 1 ✓ 1 ✓ 1 ✓ 1 ✓ 1 ✓ 1	
$Candidate C$ $50 = 100(1 - e^{3k})$	••••5 • ¹	Car 1 ✓ 50	$\frac{1}{100(1-e^{3k})}$	<u>√</u>	
$-0.5 = -e^{3k}$ $\ln(-0.5) = \ln(-$	e^{3k}) e^{3k}	$2 \checkmark 0 \cdot 5$ $3 \thickapprox \log 10$	$5 = e^{3k}$ e^{2} $G_{10}(0.5) = 3k \log_{10} e^{3k}$	√ √	
k = -0 · 231 68·5 31·5% still queue	•4 •5 eing •6	$ k = \frac{1}{5} \frac{1}{\sqrt{1}} $	0·231 • ⁴	✓	
(b)	• ⁵ evaluate <i>P</i> for $t = 5$		• ⁵ 68·5	2	
	• ⁶ interpret result		• ⁶ 31.5% still queueing		
Notes:					
 7. ●⁵ and ●⁶ are not available where k ≥ 0. 8. ●⁶ is only available where the value of P in ●⁵ was obtained by substituting into an exponential expression. 					
Commonly Observed Responses:					
Candidate D - k 63·2 36·8% still queue	=-0·2 • ⁵	5 🗸			

Question		Generic scheme	Illustrative scheme	Max mark
12. (a)	(i)	• ¹ write down coordinates of centre	• ¹ (13, -4)	1
	(ii)	• ² substitute coordinates and process for <i>c</i>	• ² $13^2 + (-4)^2 + 14 \times 13 - 22 \times (-4) \dots$ leading to $c = -455$	1
Notes:				

- 1. Accept x = 13, y = -4 for \bullet^1 .
- 2. Do not accept g = 13, f = -4 or 13, -4 for \bullet^{1} .
- 3. For those who substitute into $r = \sqrt{g^2 + f^2 c}$, working to find r must be shown for \bullet^2 to be awarded.

Commonly Observed Responses:

(b) (i)	• ³ calculate two key distances	• ³ two from $r_2 = 25$, $r_1 = 10$ and $r_2 - r_1 = 15$	2
	• ⁴ state ratio	• ⁴ 3:2 or 2:3	
(ii)	• ⁵ identify centre of C_2	• ⁵ (-7,11) or $\begin{pmatrix} -7\\11 \end{pmatrix}$	2
	• ⁶ state coordinates of P	• ⁶ (5,2)	

Notes:

- 4. The ratio must be consistent with the working for $r_2 r_1$
- 5. Evidence for \bullet^3 may appear on a sketch.
- 6. For 3:2 or 2:3 with no working, award 0/2.
- At •⁶, the ratio used to identify the coordinates of P must be consistent with the sizes of the circles in the original diagram for •⁶ to be available.

Commonly Observed Responses:

(c)	• ⁷ state equation	• ⁷ $(x-5)^{2} + (y-2)^{2} = 1600$ or $x^{2} + y^{2} - 10x - 4y - 1571 = 0$	1
Notes:			
Commonly Obs	erved Responses:		

[END OF MARKING INSTRUCTIONS]