

Qualifications

2018 Mathematics

Higher - Paper 2

Finalised Marking Instructions

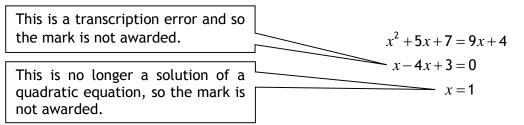
© Scottish Qualifications Authority 2018

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is reproduced, SQA should be clearly acknowledged as the source. If it is to be used for any other purpose, written permission must be obtained from permissions@sqa.org.uk.

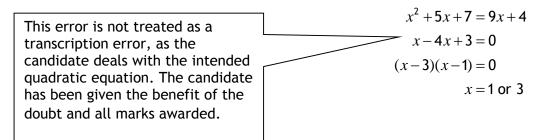
Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments. This publication must not be reproduced for commercial or trade purposes.

General marking principles for Higher Mathematics


Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

For each question, the marking instructions are generally in two sections:


- generic scheme this indicates why each mark is awarded
- illustrative scheme this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.

- (a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
- (b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
- (c) One mark is available for each •. There are no half marks.
- (d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
- (e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
- (f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
- (g) If an error is trivial, casual or insignificant, for example $6 \times 6 = 12$, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.
- (h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above

(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

Horizontal: ${}^{5}x = 2$ and x = -4 ${}^{6}y = 5$ y = -7Horizontal: ${}^{5}x = 2$ and x = -4 ${}^{6}y = 5$ and y = -7Vertical: ${}^{5}x = 2$ and y = 5 ${}^{6}x = -4$ and y = -7

You must choose whichever method benefits the candidate, **not** a combination of both.

(j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example

$\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1\frac{1}{4}$	$\frac{43}{1}$ must be simplified to 43
$\frac{15}{0\cdot 3}$ must be simplified to 50	$\frac{\frac{4}{5}}{3}$ must be simplified to $\frac{4}{15}$
$\sqrt{64}$ must be simplified to 8*	

*The square root of perfect squares up to and including 100 must be known.

- (k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
- (I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:
 - working subsequent to a correct answer
 - correct working in the wrong part of a question
 - legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
 - omission of units
 - bad form (bad form only becomes bad form if subsequent working is correct), for example

 $(x^{3}+2x^{2}+3x+2)(2x+1)$ written as $(x^{3}+2x^{2}+3x+2)\times 2x+1$ $= 2x^{4}+5x^{3}+8x^{2}+7x+2$ gains full credit

- repeated error within a question, but not between questions or papers
- (m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.
- (n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.

naga () 2

- (o) You should mark legible scored-out working that has not been replaced. However, if the scored-out working has been replaced, you must only mark the replacement working.
- (p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Detailed marking instructions for each question

Question	Generic scheme	Illustrative scheme	Max mark	
1.	 ¹ state an integral to represent the shaded area 	he $\bullet^1 \int_{-1}^{3} (3+2x-x^2) dx$	4	
	• ² integrate	• ² $3x + \frac{2x^2}{2} - \frac{x^3}{3}$		
	• ³ substitute limits	$\bullet^3 \left(3 \times 3 + \frac{2 \times 3^2}{2} - \frac{3^3}{3} \right)$		
		$-\left(3\times(-1)+\frac{2\times(-1)^2}{2}-\frac{(-1)^3}{3}\right)$		
	• ⁴ evaluate integral	• $\frac{32}{3}$ (units ²)		
Notes:				
 Limits must Where a car Candidates Do not pena Do not pena 	 Limits must appear at the •¹ stage for •¹ to be awarded. Where a candidate differentiates one or more terms at •², then •³ and •⁴ are unavailable. Candidates who substitute limits without integrating, do not gain •³ or •⁴. Do not penalise the inclusion of '+c'. Do not penalise the continued appearance of the integral sign after •¹. 			
Commonly Obse	erved Responses:			
Candidate A $\int_{-1}^{3} 3 + 2x - x^{2}$	• ¹ x	Candidate B $\int (3+2x-x^2) dx \qquad \bullet^1 \mathbf{x}$		
$\begin{vmatrix} -1 \\ = 3x + \frac{2x^2}{2} - \frac{x^3}{3} \end{vmatrix}$		$\int (3+2x-x^2) dx \qquad \bullet^1 \mathbf{x}$ $= 3x + \frac{2x^2}{2} - \frac{x^3}{3} \qquad \bullet^2 \checkmark$		
22	• ³ ^	$=9-\left(-\frac{5}{3}\right)$		
$=\frac{32}{3}$	• ⁴ <mark>√ 1</mark>	$=\frac{32}{3}$ • ⁴ ✓		

nago 05

Commonly Observed Responses:			
Candidate C		Candidate D	
$\int (3+2x-x^2) dx$	• ¹ ×	$\int_{-1}^{-1} (3+2x-x^2) dx$	•1 🗸
$= 3x + \frac{2x^2}{2} - \frac{x^3}{3}$	•2 🗸	3 	• ² ✓• ³ ✓
$=\left(3\times 3+\frac{2\times 3^2}{2}-\frac{3^3}{3}\right)$		$=-\frac{32}{3}$, hence area is $\frac{32}{3}$	•4 🗸
$\left -\left(3\times\left(-1\right)+\frac{2\times\left(-1\right)^{2}}{2}-\frac{\left(-1\right)^{3}}{3}\right)\right $	• ³ ✓	However $-\frac{32}{3} = \frac{32}{3}$ does not gain of	•4.
$=\frac{32}{3}$	•4 🗸		

	Question	Generic scheme	Illustrative scheme	Max mark
2.	(a)	• ¹ find $\mathbf{u}.\mathbf{v}$	• ¹ 24	1
Not	tes:			
Cor	nmonly Obse	erved Responses:		
		1		T
	(b)	• ² find $ \mathbf{u} $	• ² $\sqrt{26}$	4
		• ³ find $ \mathbf{v} $	• ³ \sqrt{138}	
		• ⁴ apply scalar product	• ⁴ $\cos \theta^{\circ} = \frac{24}{\sqrt{26}\sqrt{138}}$	
		\bullet^5 calculate angle	• ⁵ 66 · 38° or 1 · 16 radians	
Not	tes:			
1.	magnitude.	Eg $\sqrt{-1^2 + 4^2 - 3^2} = \sqrt{26}$ or $\sqrt{-1^2 + 4^2}$		ing a
2.	● ⁴ is not ava	ilable to candidates who simply state	e the formula $\cos \theta^{\circ} = \frac{\mathbf{u} \cdot \mathbf{v}}{ \mathbf{u} \mathbf{v} }$.	
3. 4. 5. 6.	 Accept answers which round to 66° or 1.2 radians (or 73.8 gradians). Do not penalise the omission or incorrect use of units. •⁵ is only available for a single angle. 			
Cor	nmonly Obse	erved Responses:		
u :	ndidate A = $\sqrt{26}$ = $\sqrt{138}$	• ² ✓ • ³ ✓		
$\sqrt{2}$	= √138 24 6√138 = 66 · 38…°	• ⁴ ^ • ⁵ 🗸 1		

Question	Generic scheme	Illustrative s	scheme Max mark
3.	• ¹ differentiate	• $3x^2 - 7$	3
	• ² evaluate derivative at $x = 2$	• ² 5	
	• ³ interpret result	$ullet^3(f ext{ is}) ext{ increasing}$	
Notes:			
 •² and •³ are only available as a consequence of working with a derivative. Accept f'(2)>0 for •². f'(x)>0 with no evidence of evaluating the derivative at x = 2 does not gain •² or •³. See candidate B. Do not penalise candidates who use y in place of f(x). 			
Candidate A	erved Responses:	andidate B	
$\begin{vmatrix} 3x^2 - 7 \\ x \end{vmatrix} = 2 \qquad \bullet^1 \checkmark$		$3x^2 - 7$	•1 🗸
$\begin{array}{c c} x & z \\ \hline f'(x) & + \end{array}$	- • ² ✓	f'(x) > 0	• ² ∧
increasing $\bullet^3 \checkmark$ f is increasing $\bullet^3 \land$			• ³ ^

Question	Generic scheme	Illustrative scheme	Max mark
4.	Method 1	Method 1	3
	• ¹ identify common factor	• ¹ $-3(x^2 + 2x$ stated or implied by • ²	
	• ² complete the square	• ² $-3(x+1)^2 \dots$ • ³ $-3(x+1)^2 + 10$	
	\bullet^3 process for c	• ³ $-3(x+1)^2+10$	
	Method 2	Method 2	
	•1 expand completed square form	$\bullet^1 ax^2 + 2abx + ab^2 + c$	
	• ² equate coefficients	• ² $a = -3$, $2ab = -6$ $ab^{2} + c = 7$	
	• ³ process for b and c and write i required form	h $e^{3} -3(x+1)^{2} + 10$	
Notes:			
· · ·	10 with no working gains \bullet^1 and \bullet^2 ailable for a calculation involving b	only; however, see Candidate E. ooth multiplication and addition of integers.	
Commonly Obse	erved Responses:		
Candidate A $-3(x^{2}+2)+7$ $-3((x+1)^{2}-1)+$	exception in General marking principle (h) -7 $\bullet^1 \checkmark \bullet^2 \checkmark$	Candidate B $-3((x^2-6x)+7)$ • ¹ × $-3((x-3)^2-9)+7$ • ² ✓ 1	
$-3(x+1)^{2}+10$	•3 🗸	$-3(x-3)^2+34$ • ³ \checkmark 1	
Candidate C $a(x+b)^{2}+c=a$ a=-3, 2ab=-6 b=1, c=10	$ax^{2} + 2abx + ab^{2} + c \qquad \bullet^{1} \checkmark$ 6, $ab^{2} + c = 7 \qquad \bullet^{2} \checkmark$	Candidate D $ax^{2} + 2abx + ab^{2} + c$ $\bullet^{1} \checkmark$ $a = -3, \ 2ab = -6, \ ab^{2} + c = 7$ $\bullet^{2} \checkmark$ $b = 1, \ c = 10$ $\bullet^{3} \times$	

 \bullet^3 is lost as no

form

reference is made to completed square

 \bullet^3 is awarded as all

working relates to completed square

form

Commonly Observed Respo	nses:		
Candidate E		Candidate F	
$-3(x+1)^{2}+10$		$-3x^2-6x+7$	
Check: $= -3(x^2 + 2x + 1) + 10$		$=-3(x+1)^2-1+7$	● ¹ ✓ ● ² ✓
$=-3x^2-6x-3+10$		$=-3(x+1)^{2}+6$	• ³ ×
$=-3x^2-6x+7$			
Award 3/3			
Candidate G			
$-3x^2-6x+7$			
$=x^2+2x-\frac{7}{3}$	• ¹ ¥		
$=(x+1)^2-\frac{10}{3}$	• ² ×		
$=-3(x+1)^{2}+10$	• ³ 🗴		

10

page

Question	Generic scheme	Illustrative scheme	Max mark
5. (a)	• ¹ find the midpoint of PQ	• ¹ (6,1)	3
	• ² calculate m_{PQ} and state perp. gradient	• ² $-1 \Longrightarrow m_{\text{perp}} = 1$	
	\bullet^3 find equation of L_1 in a simplified form	• ³ $y = x - 5$	
Notes:		•	
 The gradie to be awa At •³, acce 	evailable as a consequence of using a per- ent of the perpendicular bisector must ap- rded. ept $x-y-5=0$, $y-x=-5$ or any other erms have been simplified.	opear in simplified form at \bullet^2 or \bullet^3 stage	
Commonly Ob	served Responses:		
	1	1	I
(b)	• ⁴ determine y coordinate	•4 5	2
	• ⁵ state x coordinate	• ⁵ 10	
Notes:			
Commonly Ob	served Responses:		
(c)	• ⁶ calculate radius of the circle	• ⁶ $\sqrt{50}$ stated or implied by • ⁷	2
	$ullet^7$ state equation of the circle	• ⁷ $(x-10)^{2} + (y-5)^{2} = 50$	
Notes:			
using eithe	ididates have calculated the coordinates er PC or QC for the radius. orrect coordinates for C appear without	-	e for
6. Do not acc	$\left(\sqrt{50}\right)^2$ for \bullet^7 .		
Commonly Ob	served Responses:		

	Questio	on	Generic scheme	Illustrative scheme	Max mark
6.	(a)	(i)	• ¹ start composite process	• ¹ $f(2x)$	2
			• ² substitute into expression	\bullet^2 3+cos2x	
		(ii)	• ³ state second composite	• ³ 2(3+cos x)	1
Not	tes:				
1. 2.				not	
Со	Commonly Observed Responses:				
Car	Candidate A - interpret $f(g(x))$ as $g(f(x))$ Candidate B - interpret $f(g(x))$ as $g(f(x))$			x))	
(i) $2(3 + \cos x)$ $\bullet^1 \star \bullet^2 \checkmark 1$ (i) $f(2x) = 2(3 + \cos x)$ $\bullet^1 \checkmark \bullet^2 \star$					
(ii)	(ii) $3 + \cos 2x$ $\bullet^3 \checkmark 1$		• ³ <mark>✓ 1</mark>	(ii) $3 + \cos(2x)$ • ³ \checkmark 1	

Question	Generic scheme	Illustrative scheme	Max mark
6. (b)	\bullet^4 equate expressions from (a)	$\bullet^4 3 + \cos 2x = 2(3 + \cos x)$	6
	• ⁵ substitute for $\cos 2x$ in equation	• ⁵ 3+2cos ² x-1=2(3+cos x)	
	• arrange in standard quadratic form	• ⁶ $2\cos^2 x - 2\cos x - 4 = 0$	
	• ⁷ factorise	• ⁷ $2(\cos x - 2)(\cos x + 1)$	
	• ⁸ solve for $\cos x$	• ⁸ $\cos x = 2$ $\cos x = -1$	
	• ⁹ solve for <i>x</i>	• $cos x = 2$ $x = \pi$ or eg 'no solution'	

Notes:

- 3. Do not penalise absence of common factor at \bullet^7 .
- 4. •⁵ cannot be awarded until the equation reduces to a quadratic in $\cos x$.
- 5. Substituting $2\cos^2 A 1$ or $2\cos^2 \alpha 1$ at \bullet^5 stage should be treated as bad form provided the equation is written in terms of x at \bullet^6 stage. Otherwise, \bullet^5 is not available.
- 6. = 0 must appear by \bullet^7 stage for \bullet^6 to be awarded. However, for candidates using the quadratic formula to solve the equation, = 0 must appear at \bullet^6 stage for \bullet^6 to be awarded.
- 7. For candidate who do not arrange in standard quadratic form, eg $-2\cos x + 2\cos^2 x 4 = 0$ •⁶ is only available if •⁷ has been awarded.
- 8. $\bullet^7 \bullet^8$ and \bullet^9 are only available as a consequence of solving a quadratic with distinct real roots.
- 9. $\bullet^7 \bullet^8$ and \bullet^9 are not available for any attempt to solve a quadratic equation written in the form $ax^2 + bx = c$.
- 10. •⁹ is not available to candidates who work in degrees and do not convert their solution(s) into radian measure.
- 11. Answers written as decimals should be rounded to no fewer than 2 significant figures.
- 12. •⁹ is not available for any solution containing angles outwith the interval $0 \le x < 2\pi$.

Commonly Observed Responses:			
Candidate C Quadratic expressed in terms of c or x. $3 + \cos 2x = 2(3 + \cos x)$ $\bullet^4 \checkmark$ $3 + 2\cos^2 x - 1 = 2(3 + \cos x)$ $\bullet^5 \checkmark$ $2\cos^2 x - 2\cos x - 4 = 0$ $\bullet^6 \checkmark$ $2c^2 - 2c - 4 = 0$ $2(c-2)(c+1) = 0$ $\bullet^7 \checkmark$ $c = 2$, $c = -1$ $\bullet^8 \times$ no solution, $x = \pi$ $\bullet^9 \checkmark$ However, $\bullet^4 \checkmark \bullet^5 \checkmark \bullet^6 \checkmark$ $2(c-2)(c+1) = 0$ $\bullet^7 \checkmark$ $\cos x = 2$ $\cos x = -1$ $\bullet^8 \checkmark$ Solution stated in terms of $\cos x$ explicitly	Candidate D $3 + \cos 2x = 2(3 + \cos x)$ $4 \checkmark$ $3 + 2\cos^2 x - 1 = 2(3 + \cos x)$ $5 \checkmark$ $2\cos^2 x - 2\cos x = 4$ $6 \land$ $\cos^2 x - \cos x = 2$ $\cos x(\cos x - 1) = 2$ $7 \checkmark 2$ $\cos x = 2, \cos x - 1 = 2$ $\cos x = 2, \cos x = 3$ $8 \times$ no solutions $9^9 \times$ see note 9		
Candidate E - reading $\cos 2x$ as $\cos^2 x$ $3 + \cos^2 x = 2(3 + \cos x)$ • ⁴ × • ⁵ • no substitution required $\cos^2 x - 2\cos x - 3 = 0$ • ⁶ • 1 $(\cos x - 3)(\cos x + 1)$ • ⁷ • 1 $\cos x = 3$, $\cos x = -1$ • ⁸ • 1 no solution, $x = \pi$ • ⁹ • 1	Candidate F - using quadratic formula $4 \checkmark 6^{5} \checkmark$ $2\cos^{2} x - 2\cos x - 4 = 0$ $\cos x = \frac{2 \pm \sqrt{36}}{4}$ or $\cos x = \frac{1 \pm \sqrt{9}}{2}$ $6 \checkmark$		

	Question	Generic scheme	Illustrative scheme	Max mark
7.	(a) (i)	 ¹ use '2' in synthetic division or in evaluation of cubic 	• ¹ 2 2 -3 -3 2 2	2
		• ² complete division/evaluation and interpret result	or $2 \times (2)^3 - 3(2)^2 - 3 \times (2) + 2$ • ² 2 2 3 -3 -3 2 <u>4 2 -2</u> 2 1 -1 0 Remainder = 0 $\therefore (x-2)$ is a factor	
			or $f(2)=0$: $(x-2)$ is a factor	
	(ii)	• ³ state quadratic factor	• $^{3} 2x^{2} + x - 1$	2
		• ⁴ complete factorisation	• $(x-2)(2x-1)(x+1)$ stated explicitly	
Not	es:			<u> </u>
2. 3.	Accept any • ' $f(2)$ • 'since • the 0 ' \Rightarrow ' Do not acce • doub • ' $x =$ · ($x -$	legitimately at 0 before \bullet^2 can be awar of the following for \bullet^2 : 2 = 0 so $(x-2)$ is a factor' e remainder = 0, it is a factor' from any method linked to the word 'f ept any of the following for \bullet^2 : le underlining the zero or boxing the zero -2 is a factor', ' $(x+2)$ is a factor', ' $(x-2)$ is a root', ' $x = -2$ is a root' word 'factor' only, with no link.	factor' by e.g. 'so', 'hence', ' \therefore ', ' $ ightarrow$ ', ero without comment	
Cor	nmonly Obse	erved Responses:		
7.	(b)	• ⁵ demonstrate result	• $u_6 = a(2a-3)-1=2a^2-3a-1$ leading to $u_7 = a(2a^2-3a-1)-1$ $= 2a^3-3a^2-a-1$	1
Not	es:	1	1	I
Cor	nmonly Obse	erved Responses:		

Question	Generic scheme	Illustrative scheme	Max mark
7. (c) (i)	• ⁶ equate u_5 and u_7 and arrange standard form		3
	• ⁷ solve cubic	• ⁷ $a=2, a=\frac{1}{2}, a=-1$	
	• ⁸ discard invalid solutions for a	$\bullet^8 a = \frac{1}{2}$	
(ii)	• ⁹ calculate limit	• ⁹ -2	1
Notes:			
However, se factorising t solutions ap	e Candidates B and C. BEWARE: Ca	solutions in terms of x appearing in a(ii). Indidates who make a second attempt at incorrectly cannot be awarded mark 7 for an \bullet^7 .	
6. $x = \frac{1}{2}$ does			
7. For candida		ation at • ⁶ , and adopt a guess and check may gain 3/3. See Candidate D.	
Commonly Obse	erved Responses:		
Candidate A $2a^3 - 3a^2 - 3a +$	2 = 0 ● ⁶ ✓	Candidate B - missing '= 0' from equatio $2a^3 - 3a^2 - 3a + 2$ • ⁶	
$x = 2, x = \frac{1}{2}, x$	$= -1$ in a(ii) $\bullet^7 \checkmark \bullet^8 \land$	$2a^{3}-3a^{2}-3a+2$ $x=2, x=\frac{1}{2}, x=-1$ in a(ii) \bullet^{7}	√ 1
		$a = \frac{1}{2} \qquad \qquad \bullet^8$	✓ 1
Candidate C - m	issing '=0' from equation	Candidate D - $x = -1$, $x = \frac{1}{2}$ and $x = 2$ identified in a(ii)	
$2a^3 - 3a^2 - 3a +$		$u_5 = 2\left(\frac{1}{2}\right) - 3 = -2 \qquad \qquad \bullet^6$	 Image: A start of the start of
$x = 2, x = \frac{1}{2}, \frac{1}{2}$	$x = -1$ in a(ii) $\bullet^7 \land$	$u_7 = 2\left(\frac{1}{2}\right)^3 - 3\left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right) - 1 = -2$ \bullet^7	 Image: A set of the set of the
2	No clear link between a and x .	$a = \frac{1}{2}$ because $-1 < a < 1$ • ⁸	 Image: A start of the start of

Question	Generic scheme	Illustrative scheme	Max mark
8. (a)	• ¹ use compound angle formula	• ¹ $k \cos x^{\circ} \cos a^{\circ} + k \sin x^{\circ} \sin a^{\circ}$ stated explicitly	4
	• ² compare coefficients	• ² $k \cos a^\circ = 2$ and $k \sin a^\circ = -1$ stated explicitly	
	• ³ process for k	• ³ $k = \sqrt{5}$	
	• ⁴ process for <i>a</i> and express in required form	• ⁴ $\sqrt{5}\cos(x-333\cdot4)^{\circ}$	

Notes:

- 1. Accept $k(\cos x^{\circ} \cos a^{\circ} + \sin x^{\circ} \sin a^{\circ})$ for \bullet^{1} . Treat $k \cos x^{\circ} \cos a^{\circ} + \sin x^{\circ} \sin a^{\circ}$ as bad form only if the equations at the \bullet^{2} stage both contain k.
- 2. Do not penalise the omission of degree signs.
- 3. $\sqrt{5}\cos x^{\circ}\cos a^{\circ} + \sqrt{5}\sin x^{\circ}\sin a^{\circ}$ or $\sqrt{5}(\cos x^{\circ}\cos a^{\circ} + \sin x^{\circ}\sin a^{\circ})$ is acceptable for \bullet^{1} and \bullet^{3} .
- 4. \bullet^2 is not available for $k \cos x^\circ = 2$, $k \sin x^\circ = -1$, however \bullet^4 may still be gained.
- 5. •³ is only available for a single value of k, k > 0.
- 6. •⁴ is not available for a value of a given in radians.
- 7. Accept any value of a which rounds to 333°
- 8. Candidates may use any form of the wave function for \bullet^1 , \bullet^2 and \bullet^3 , however, \bullet^4 is only available if the wave is interpreted in the form $k \cos(x-a)^\circ$.
- 9. Evidence for \bullet^4 may not appear until part (b).

Commonly Observed Responses:

Responses with missing information in working:

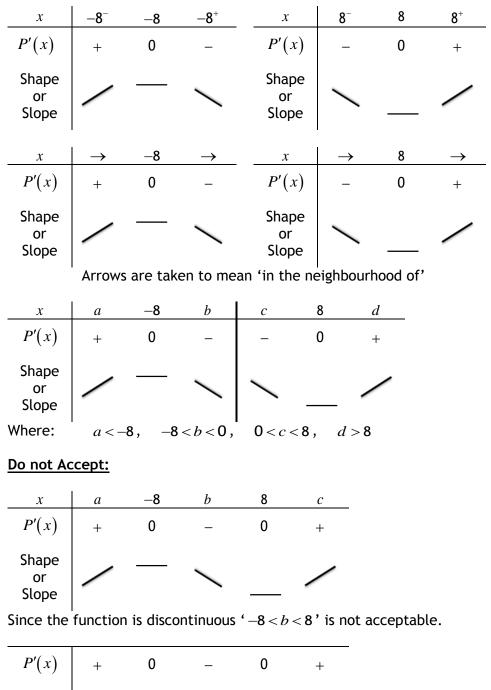
Candidate A		Candidate B	Candidate C
	● ¹ ∧	$k\cos x^{\circ}\cos a^{\circ} + k\sin x^{\circ}\sin a^{\circ} \bullet^{1}\checkmark$	$\cos x^{\circ} \cos a^{\circ} + \sin x^{\circ} \sin a^{\circ} \bullet^{1} $
$\sqrt{5}\cos a^\circ = 2$		$\cos a^\circ = 2$	$\cos a^\circ = 2$
$\sqrt{5}\sin a^\circ = -1$	● ² ✓ ● ³	$\sin a^\circ = -1 \qquad \qquad \bullet^2 \mathbf{x}$	$\sin a^\circ = -1 \qquad \qquad \bullet^2 \mathbf{x}$
√		$\tan a^\circ = -\frac{1}{2}$	$k = \sqrt{5}$ • ³ ✓
$\tan a^\circ = -\frac{1}{2}$		$a = 333 \cdot 4$ Not consistent with equations at • ² .	$\tan a^\circ = -\frac{1}{2}$
$a = 333 \cdot 4$		$\sqrt{5}\cos(x-333\cdot 4)^\circ$ $\bullet^3\checkmark \bullet^4$	$a = 333 \cdot 4$
$\sqrt{5}\cos(x-333\cdot4)^\circ$	•4 🗸		$\sqrt{5}\cos(x-333\cdot4)^\circ$ • ⁴ x

Responses with the correct expansion of $k \cos(x-a)^\circ$ but errors for either \bullet^2 or \bullet^3 : Candidate D Candidate E Candidate F $k\cos x^{\circ}\cos a^{\circ} + k\sin x^{\circ}\sin a^{\circ} \bullet^{1}$ $k\cos x^{\circ}\cos a^{\circ} + k\sin x^{\circ}\sin a^{\circ} \bullet^{1} \checkmark$ $k\cos x^{\circ}\cos a^{\circ} + k\sin x^{\circ}\sin a^{\circ} \quad \bullet^{1}$ $k\cos a^\circ = -1$ 1 \checkmark $k\cos a^\circ = 2$ •² 🗴 $k\cos a^\circ = 2$ $k \sin a^\circ = 2$ •² 🗸 •² 🗴 $k \sin a^\circ = -1$ $k \sin a^\circ = 1$ $\tan a^\circ = -2$ $\bullet^3 \wedge \bullet^4 \mathbf{x}$ $\tan a^\circ = -2$ a = 116.6 $\tan a^\circ = \frac{1}{2}$ $a = 296 \cdot 6$ $a = 26 \cdot 6$ $\sqrt{5}\cos(x-116\cdot 6)^\circ$ $\bullet^3\checkmark \bullet^4\checkmark 1$ $\sqrt{5}\cos(x-26\cdot 6)^\circ$ $\bullet^3\checkmark \bullet^4\checkmark 1$

Commonly Observed Responses:

Responses with the incorrect labelling, $k(\cos A \cos B + \sin A \sin B)$ from the formula list:

Candidate G	Candidate H	Candidate I
$k\cos A\cos B + k\sin A\sin B \bullet^1 \mathbf{x}$	$k\cos A\cos B + k\sin A\sin B$ • ¹ *	$k\cos A\cos B + k\sin A\sin B$ • ¹ *
$k \cos a^{\circ} = 2$ $k \sin a^{\circ} = -1 \qquad \bullet^2 \checkmark$	$k \cos x^{\circ} = 2$ $k \sin x^{\circ} = -1 \qquad \bullet^{2} *$	$k \cos B^{\circ} = 2$ $k \sin B^{\circ} = -1 \qquad \bullet^{2} *$
$\tan a^\circ = -\frac{1}{2}$ $a = 333 \cdot 4$	$\tan x^{\circ} = -\frac{1}{2}$ $x = 333 \cdot 4$	$\tan B^{\circ} = -\frac{1}{2}$ $B = 333 \cdot 4$
$\sqrt{5}\cos(x-333\cdot4)^\circ$ $\bullet^3\checkmark$ $\bullet^4\checkmark$	$\sqrt{5}\cos(x-333\cdot4)^\circ \bullet^3 \checkmark \bullet^4 \checkmark 1$	$\sqrt{5}\cos(x-333\cdot4)^\circ \bullet^3 \checkmark \bullet^4 \checkmark 1$


(Questi	on	Generic scheme	Illustrative scheme Max mark
8.	(b)	(i)	• ⁵ state minimum value	• ⁵ -3 $\sqrt{5}$ or - $\sqrt{45}$ 1
		(ii)	Method 1	Method 1 2
			• ⁶ start to solve	• $x - 333 \cdot 4 = 180$ leading to $x = 513 \cdot 4$
			• ⁷ state value of x	$\bullet^7 x = 153 \cdot 4 \dots$
			Method 2	Method 2
			• ⁶ start to solve	• $x - 333 \cdot 4 = -180$
			• ⁷ state value of x	• ⁷ $x = 153 \cdot 4 \dots$
Not	es:			
		-	ailable for a single value of x . ailable in cases where $a < -180$ or	a > 180. See Candidate J
Con	nmonly	y Obse	erved Responses:	
$\begin{array}{c} x - \\ x = \end{array}$	26 · 6 = 206 · 6	180	from $\sqrt{5}\cos(x-26\cdot6)^\circ$ • ⁶ \checkmark 1 • ⁷ \checkmark 2 $\cos(x-116\cdot6)^\circ$	Candidate K - from 'minimum' of eg $-\sqrt{5}$ $3\sqrt{5}\cos(x-333\cdot4)^\circ = -\sqrt{5}$ $\cos(x-333\cdot4)^\circ = -\frac{1}{3}$ $x-333\cdot4 = 109\cdot5, 250\cdot5$ $x = 442\cdot9, 583\cdot9$ $x = 82\cdot9, 223\cdot9$ • ⁶ \checkmark 1 • ⁷ \checkmark

مممم

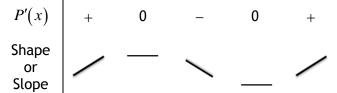

Question	Generic scheme	Illustrative scheme	Max mark			
9.	• ¹ express P in differentiable form	n • $2x + 128x^{-1}$	6			
	• ² differentiate	• ² $2 - \frac{128}{x^2}$				
	• ³ equate expression for derivative to 0	$e^{3} 2 - \frac{128}{x^{2}} = 0$				
	• ⁴ process for x	• ⁴ 8				
	• ⁵ verify nature	 ⁵ table of signs for a derivative (see next page) ∴ minimum 				
		or $P''(8) = \frac{1}{2} > 0$: minimum				
	• ⁶ evaluate P	• ⁶ $P = 32$ or min value = 32				
Notes:	•					
2. For candida setting their 3. e^4 , e^5 and e^6 4. At e^2 accept 5. Ignore the a 6. $\sqrt{\frac{128}{2}}$ must 7. e^5 is not ava 8. e^6 is still ava minimum at 9. e^5 and e^6 are of <i>x</i> .	 For candidates who integrate any term at the •² stage, only •³ is available on follow through for setting their 'derivative' to 0. •⁴, •⁵ and •⁶ are only available for working with a derivative which contains an index ≤ -2. At •² accept 2-128x⁻². Ignore the appearance of -8 at •⁴. √(128)/2 must be simplified at •⁴ or •⁵ for •⁴ to be awarded. •⁵ is not available to candidates who consider a value of x ≤ 0 in the neighbourhood of 8. •⁶ is still available in cases where a candidate's table of signs does not lead legitimately to a minimum at •⁵. •⁵ and •⁶ are not available to candidates who state that the minimum exists at a negative value 					
-	erved Responses:					
Candidate A - d one line	_	Candidate B - differentiating over more t one line $P(x) = 2x + 128x^{-1}$ • ¹ ✓	han			
P'(x) = 2 + 128x	.=1	$P'(x) = 2 + 128x^{-1}$				
P'(x) = 2 - 128x	_7 2 1	$P'(x) = 2 - 128x^{-2}$ • ² *				
$2-128x^{-2}=0$	3 🗸 🖌	$2 - 128x^{-2} = 0$ • ³ \checkmark 1				

Table of signs for a derivative

Accept:

Here, for exemplification, tables of signs considering both roots separately have been displayed. However, in this question, it was only expected that candidates would consider the positive root for \bullet^5 . Do not penalise the consideration of the negative root.

Since the function is discontinuous ' $-8 \rightarrow 8$ ' is not acceptable.

General Comments:

- For this question do not penalise the omission of 'x' or the word 'shape'/'slope'.
- Stating values of P'(x) in the table is an acceptable alternative to writing '+' or '-' signs. Values must be checked for accuracy.
 - The only acceptable variations of P'(x) are: P', $\frac{dP}{dx}$ and $2 \frac{128}{x^2}$.

Question	Generic scheme	Illustrative scheme	Max mark		
10.	• ¹ use the discriminant	• ¹ $(m-3)^2 - 4 \times 1 \times m$	4		
	• ² identify roots of quadratic expression	• ² 1, 9			
	• ³ apply condition	$\bullet^3 (m-3)^2 - 4 \times 1 \times m > 0$			
	• ⁴ state range with justification	• $m < 1, m > 9$ with eg sketch or table of signs			
Notes:					
then \bullet^3 is lo	st but \bullet^4 is available.	', 'discriminant \leq 0' or 'discriminant \geq correct condition has subsequently been			
 For candidate award •³. Set 	tes who have identified expressions for ee Candidate A. earance of x in any expression for \bullet^1 ,	r a , b , and c and then state $b^2 - 4ac >$ award 0/4.	· 0		
Commonly Obse	erved Responses:				
$m^2 - 10m + 9 = 0$	Candidate A $(m-3)^2 - 4 \times 1 \times m$ • ¹ ✓ $m^2 - 10m + 9 = 0$				
m = 1, m = 9 $b^2 - 4ac > 0$ m < 1, m > 0	$e^2 \checkmark$ $e^3 \checkmark$				
	$m < 1, m > 9$ $\bullet^4 \land$ Expressions for a , b , and c implied at \bullet^1				

Question	Generic scheme	Illustrative scheme	Max mark			
11. (a)	• ¹ substitute for P and t	• $1 50 = 100(1-e^{3k})$	4			
	• ² arrange equation in the form $A = e^{kt}$	• ² $0 \cdot 5 = e^{3k}$ or $-0 \cdot 5 = -e^{3k}$				
	• ³ simplify	• ³ $\ln 0.5 = 3k$ • ⁴ $k = -0.231$				
	• ⁴ solve for k	• ⁴ $k = -0.231$				
Notes:						
 Any base ma Accept any •³ must be c For candidat Where cand 	tes whose working would (or should idates use a 'rule' masquerading as	te D. form $A = e^{kt}$ at its first appearance. a l) arrive at $log(negative) \bullet^4$ is not available a law of logarithms, \bullet^3 and \bullet^4 is not available				
	erved Responses:					
Candidate A $50 = 100(1 - e^{3k})$ $0 \cdot 5 = -e^{3k}$ $\ln(0 \cdot 5) = 3k$ $k = -0 \cdot 231$ $68 \cdot 5$ $31 \cdot 5\%$ still queue Candidate C $50 = 100(1 - e^{3k})$ $-0 \cdot 5 = -e^{3k}$ $\ln(-0 \cdot 5) = \ln(-6^{3k})$	$\begin{array}{c} \bullet^{1} \checkmark \\ \bullet^{2} \varkappa \\ \bullet^{3} \varkappa \\ \bullet^{4} \varkappa \\ \bullet^{5} \checkmark \\ \bullet^{6} \checkmark \\ \bullet^{1} \checkmark \\ \bullet^{2} \checkmark \end{array}$	Candidate B $0.5 = 100(1-e^{3k})$ • ¹ $0.995 = e^{3k}$ • ² $\ln(0.995) = 3k$ • ³ k = -0.0017 • ⁴ P = 0.8319 • ⁵ 99.2% still queuing • ⁶ Candidate D $50 = 100(1-e^{3k})$ • ¹ $0.5 = e^{3k}$ • ² $\log_{10}(0.5) = 3k \log_{10} e$ • ³	 ✓ 1 			
k = -0.231 68.5 31.5% still queue	● ⁴ ★ ● ⁵ √ 1	k = -0.231	✓			
(b)	• ⁵ evaluate <i>P</i> for $t = 5$	• ⁵ 68·5	2			
	• ⁶ interpret result	• ⁶ 31.5% still queueing				
Notes:			-			
7. \bullet^5 and \bullet^6 are not available where $k \ge 0$. 8. \bullet^6 is only available where the value of P in \bullet^5 was obtained by substituting into an exponential expression.						
Commonly Observed Responses:						
Candidate D - <i>k</i> 63·2 36·8% still queue	•5 🗸					

naga 22

	Question		on	Generic scheme	Illustrative scheme	Max mark
12.	. (a)	(i)	•1 write down coordinates of centre	• ¹ (13, -4)	1
			(ii)	• ² substitute coordinates and process for <i>c</i>	• ² $13^2 + (-4)^2 + 14 \times 13 - 22 \times (-4) \dots$ leading to $c = -455$	1
No	tes:					
1. 2.	1. Accept $x = 13$, $y = -4$ for \bullet^1 . 2. Do not accept $g = 13$, $f = -4$ or 13 , -4 for \bullet^1 .					

3. For those who substitute into $r = \sqrt{g^2 + f^2 - c}$, working to find r must be shown for \bullet^2 to be awarded.

Commonly Observed Responses:

(b) (i)	• ³ calculate two key distances	• ³ two from $r_2 = 25$, $r_1 = 10$ and $r_2 - r_1 = 15$	2
	• ⁴ state ratio	• ⁴ 3:2 or 2:3	
(ii)	• ⁵ identify centre of C_2	• ⁵ (-7,11) or $\begin{pmatrix} -7\\11 \end{pmatrix}$	2
	• ⁶ state coordinates of P	• ⁶ (5,2)	

Notes:

- 4. The ratio must be consistent with the working for $r_2 r_1$
- 5. Evidence for \bullet^3 may appear on a sketch.
- 6. For 3:2 or 2:3 with no working, award 0/2.
- 7. At •⁶, the ratio used to identify the coordinates of P must be consistent with the sizes of the circles in the original diagram for •⁶ to be available.

Commonly Observed Responses:

(c)	\bullet^7 state equation	• ⁷ $(x-5)^{2} + (y-2)^{2} = 1600$ or $x^{2} + y^{2} - 10x - 4y - 1571 = 0$	1
Notes:			
Commonly (Observed Responses:		

[END OF MARKING INSTRUCTIONS]