

National Qualifications 2018

X757/76/02

Physics Section 1 — Questions

TUESDAY, 8 MAY 9:00 AM – 11:30 AM

Instructions for the completion of Section 1 are given on *page 02* of your question and answer booklet X757/76/01.

Record your answers on the answer grid on page 03 of your question and answer booklet.

Reference may be made to the Data Sheet on *page 02* of this booklet and to the Relationships Sheet X757/76/11.

Before leaving the examination room you must give your question and answer booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

DATA SHEET

COMMON PHYSICAL QUANTITIES

Quantity	Symbol	Value	Quantity	Symbol	Value
Speed of light in vacuum	С	$3.00 imes 10^8 { m m s^{-1}}$	Planck's constant	h	$6.63 imes10^{-34}\mathrm{Js}$
Magnitude of the charge on an electron	е	$1.60 imes 10^{-19} \mathrm{C}$	Mass of electron	m _e	9∙11 × 10 ⁻³¹ kg
Universal Constant of Gravitation	G	$6.67 imes 10^{-11} \text{m}^3 \text{kg}^{-1} \text{s}^{-2}$	Mass of neutron	<i>m</i> _n	$1.675 imes 10^{-27} \mathrm{kg}$
Gravitational acceleration on Earth	g	$9.8\mathrm{ms^{-2}}$	Mass of proton	m _p	$1\cdot 673 imes 10^{-27}\mathrm{kg}$
Hubble's constant	H_0	$2.3 imes 10^{-18} s^{-1}$			

REFRACTIVE INDICES

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K.

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Water	1.33
Crown glass	1.50	Air	1.00

SPECTRAL LINES

Element	<i>Wavelength</i> /nm	Colour	Element	<i>Wavelength</i> /nm	Colour
Hydrogen	656	Red	Cadmium	644	Red
	486	Blue-green		509	Green
	434	Blue-violet		480	Blue
	410	Violet			
	397	Ultraviolet		Lasers	
	389	Ultraviolet	Element	<i>Wavelength</i> /nm	Colour
			Carbon dioxide	9550 7	Infrared
Sodium	589	Yellow		10590 🖌	
			Helium-neon	633	Red

PROPERTIES OF SELECTED MATERIALS

Substance	Density/kg m ⁻³	Melting Point/K	Boiling Point/K
Aluminium	2.70×10^{3}	933	2623
Copper	8.96×10^{3}	1357	2853
Ice	9.20×10^{2}	273	
Sea Water	1.02×10^3	264	377
Water	1.00×10^3	273	373
Air	1.29		• • • •
Hydrogen	9∙0 × 10 ^{−2}	14	20

The gas densities refer to a temperature of 273 K and a pressure of $1\cdot01 \times 10^5$ Pa.

SECTION 1 — 20 marks Attempt ALL questions

1. A car is moving at a speed of $2 \cdot 0 \text{ m s}^{-1}$.

The car now accelerates at $4 \cdot 0 \text{ m s}^{-2}$ until it reaches a speed of 14 m s^{-1} . The distance travelled by the car during this acceleration is

- A 1.5 m
- B 18 m
- C 24 m
- D 25 m
- E 48 m.
- A ball is dropped from rest and allowed to bounce several times. The graph shows how the velocity of the ball varies with time.

A student makes the following statements about the ball.

- I The ball hits the ground at P.
- II The ball is moving upwards between Q and R.
- III The ball is moving upwards between R and S.

Which of these statements is/are correct?

- A I only
- B II only
- C III only
- D I and II only
- E I and III only

3. A block of mass 6.0 kg and a block of mass 8.0 kg are connected by a string. A force of 32 N is applied to the blocks as shown.

A frictional force of 4.0 N acts on **each** block.

The acceleration of the 6.0 kg block is

- A $1.7 \,\mathrm{m\,s^{-2}}$
- B $2 \cdot 0 \text{ m s}^{-2}$
- C $2 \cdot 3 \text{ m s}^{-2}$
- D 2.9 m s^{-2}
- E $5.3 \,\mathrm{m\,s^{-2}}$.
- 4. A person stands on a weighing machine in a lift. When the lift is at rest, the reading on the weighing machine is 700 N.

The lift now descends and its speed increases at a constant rate.

The reading on the weighing machine

- A is a constant value higher than 700 N
- B is a constant value lower than 700 N
- C continually increases from 700 N
- D continually decreases from 700 N
- E remains constant at 700 N.
- 5. Enceladus is a moon of Saturn. The mass of Enceladus is 1.08×10^{20} kg.

The mass of Saturn is 5.68×10^{26} kg.

The gravitational force of attraction between Enceladus and Saturn is $7\cdot 24 \times 10^{19}$ N. The orbital radius of Enceladus around Saturn is

- A $2 \cdot 38 \times 10^8 \, \text{m}$
- B $9.11 \times 10^{13} \, \text{m}$
- $C \qquad 5{\cdot}65\times 10^{16}\,m$
- $D \qquad 8{\cdot}30\times 10^{27}\,m$
- $E \qquad 3\cdot 19\times 10^{33}\,m.$

6. A spacecraft is travelling at 0.10c relative to a star.

An observer on the spacecraft measures the speed of light emitted by the star to be

- A 0.90*c*
- B 0.99*c*
- C 1.00*c*
- D 1.01*c*
- E 1.10*c*.
- 7. A spacecraft is travelling at a speed of 0.200c relative to the Earth.

The spacecraft emits a signal for 20.0 seconds as measured in the frame of reference of the spacecraft.

An observer on Earth measures the duration of the signal as

- A 19.2 s
- B 19.6 s
- C 20.0 s
- D 20.4 s
- E 20.8 s.
- 8. How many types of quark are there?
 - A 8
 - Β 6
 - C 4
 - D 3
 - E 2

9. An electron is a

- A boson
- B hadron
- C baryon
- D meson
- E lepton.

10. A proton enters a region of magnetic field as shown.

On entering the magnetic field the proton

- A deflects into the page
- B deflects out of the page
- C deflects towards the top of the page
- D deflects towards the bottom of the page
- E is not deflected.
- 11. A nuclear fission reaction is represented by the following statement.

 ${}^{1}_{0}n + {}^{235}_{92}U \rightarrow {}^{141}_{56}Ba + X + 3 {}^{1}_{0}n$

The nucleus represented by X is

- A ${}^{96}_{40}$ Zr
- B ⁹²₃₆Kr
- C ⁹⁷₄₀Zr
- D ⁹³₃₆Kr
- E ⁹⁴₄₀Zr.
- 12. The irradiance on a surface 0.50 m from a point source of light is *I*. The irradiance on a surface 1.5 m from this source is
 - A 0.11*I*
 - B 0.33*I*
 - C 1.5*I*
 - D 3.0*I*
 - E 9.0*I*.

13. Waves from two coherent sources, S_1 and S_2 , produce an interference pattern. Maxima are detected at the positions shown below.

The path difference ${\rm S_1P}-{\rm S_2P}$ is 154 mm.

The wavelength of the waves is

- A 15.4 mm
- B 25.7 mm
- C 28.0 mm
- D 30.8 mm
- E 34.2 mm.

14. A ray of monochromatic light passes from air into a block of glass as shown.

The wavelength of this light in air is $6 \cdot 30 \times 10^{-7}$ m. The refractive index of the glass for this light is 1.50. The frequency of this light in the glass is

- A $2 \cdot 10 \times 10^{-15} \, \text{Hz}$
- B 1.26×10^2 Hz
- C $1.89 \times 10^2 \, \text{Hz}$
- $D \qquad 4{\cdot}76\times 10^{14}\,Hz$
- $E \qquad 7 \cdot 14 \times 10^{14} \, \text{Hz.}$

15. A circuit is set up as shown.

The battery has negligible internal resistance.

A student makes the following statements about the readings on the meters in this circuit.

- I When switch S is open the reading on the voltmeter will be 6.0 V.
- II When switch S is open the reading on A_2 will be 0.60 A.
- III When switch S is closed the reading on A_1 will be 0.80 A.

Which of these statements is/are correct?

- A I only
- B II only
- C I and II only
- D II and III only
- E I, II and III
- **16.** The power dissipated in a 120Ω resistor is 4.8 W.

The current in the resistor is

- A 0.020 A
- B 0.040 A
- C 0.20 A
- D 5.0 A
- E 25 A.

- 17. A $24.0\,\mu$ F capacitor is charged until the potential difference across it is 125 V. The charge stored on the capacitor is
 - A $5 \cdot 21 \times 10^6 \, \text{C}$
 - $B ~~7{\cdot}75\times10^{-2}\,C$
 - $C ~~1{\cdot}50\times10^{-3}\,C$
 - $D ~~3{\cdot}00\times10^{-3}\,C$
 - $E \qquad 1{\cdot}92\times 10^{-7}\,C.$
- 18. A circuit is set up as shown.

When the capacitor is fully charged the energy stored in the capacitor is

- A $1.6 \times 10^{-5} \text{ J}$
- B $1.3 \times 10^{-3} \text{ J}$
- C $2 \cdot 6 \times 10^{-3} \text{ J}$
- $D \qquad 1.6\times 10^{-2}\,J$
- $E \qquad 1{\cdot}6\times 10^4\,J.$

19. The circuit shown is used to charge and then discharge a capacitor C.

Which pair of graphs shows how the potential difference V across the capacitor varies with time t during charging and discharging?

20. A student carries out an experiment to determine the specific heat capacity *c* of a solid. The relationship used to calculate *c* is

$$c = \frac{E}{m\Delta T}$$

The recorded measurements and their percentage uncertainties are shown.

energy supplied,
$$E = 5000 \text{ J} \pm 1\%$$

mass of solid, $m = 0.20 \text{ kg} \pm 2\%$
change in temperature, $\Delta T = 4.5 \text{ °C} \pm 5\%$

A good estimate of the percentage uncertainty in the calculated value of *c* is

- A 8%
- B 7%
- C 5%
- D 3%
- E 1%.

[END OF SECTION 1. NOW ATTEMPT THE QUESTIONS IN SECTION 2 OF YOUR QUESTION AND ANSWER BOOKLET]